Results 11  20
of
163
Abstract interpretation of probabilistic semantics
 In Seventh International Static Analysis Symposium (SAS’00), number 1824 in Lecture Notes in Computer Science
, 2000
"... Abstract. Following earlier models, we lift standard deterministic and nondeterministic semantics of imperative programs to probabilistic semantics. This semantics allows for random external inputs of known or unknown probability and random number generators. We then propose a method of analysis of ..."
Abstract

Cited by 39 (5 self)
 Add to MetaCart
Abstract. Following earlier models, we lift standard deterministic and nondeterministic semantics of imperative programs to probabilistic semantics. This semantics allows for random external inputs of known or unknown probability and random number generators. We then propose a method of analysis of programs according to this semantics, in the general framework of abstract interpretation. This method lifts an “ordinary ” abstract lattice, for nonprobabilistic programs, to one suitable for probabilistic programs. Our construction is highly generic. We discuss the influence of certain parameters on the precision of the analysis, basing ourselves on experimental results. 1
Probabilistically accurate program transformations
 In SAS
, 2011
"... Abstract. The standard approach to program transformation involves the use of discrete logical reasoning to prove that the transformation does not change the observable semantics of the program. We propose a new approach that, in contrast, uses probabilistic reasoning to justify the application of t ..."
Abstract

Cited by 38 (14 self)
 Add to MetaCart
(Show Context)
Abstract. The standard approach to program transformation involves the use of discrete logical reasoning to prove that the transformation does not change the observable semantics of the program. We propose a new approach that, in contrast, uses probabilistic reasoning to justify the application of transformations that may change, within probabilistic accuracy bounds, the result that the program produces. Our new approach produces probabilistic guarantees of the form P(D  ≥ B) ≤ ɛ, ɛ ∈ (0, 1), where D is the difference between the results that the transformed and original programs produce, B is an acceptability bound on the absolute value of D, and ɛ is the maximum acceptable probability of observing large D. We show how to use our approach to justify the application of loop perforation (which transforms loops to execute fewer iterations) to a set of computational patterns. 1
A probabilistic language based upon sampling functions
 In Conference Record of the 32nd Annual ACM Symposium on Principles of Programming Languages
, 2005
"... As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive p ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
(Show Context)
As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages which treat probability distributions as primitive datatypes. Most probabilistic languages, however, focus only on discrete distributions and have limited expressive power. This paper presents a probabilistic language, called λ○, whose expressive power is beyond discrete distributions. Rich expressiveness of λ ○ is due to its use of sampling functions, i.e., mappings from the unit interval (0.0, 1.0] to probability domains, in specifying probability distributions. As such, λ ○ enables programmers to formally express and reason about sampling methods developed in simulation theory. The use of λ ○ is demonstrated with three applications in robotics: robot localization, people tracking, and robotic mapping. All experiments have been carried out with real robots.
An Operational Semantics for Probabilistic Concurrent Constraint Programming
, 1998
"... This paper investigates a probabilistic version of the concurrent constraint programming paradigm (CCP). The aim is to introduce the possibility to formulate so called "randomised algorithms" within the CCP framework. Differently from common approaches in (imperative) highlevel programmin ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
(Show Context)
This paper investigates a probabilistic version of the concurrent constraint programming paradigm (CCP). The aim is to introduce the possibility to formulate so called "randomised algorithms" within the CCP framework. Differently from common approaches in (imperative) highlevel programming languages, which rely on some kind of random() function, we introduce randomness in the very definition of the language by means of a probabilistic choice construct. This allows a program to make stochastic moves during its execution. We call the resulting language Probabilistic Concurrent Constraint Programming (PCCP). We present an operational semantics for PCCP by means of a probabilistic transition system such that the execution of a PCCP program may be seen as a stochastic process, i.e. as a random walk on the transition graph. The transition probabilities are given explicitly. This semantics captures a notion of observables which combines results of computations and the probability of those re...
Quantifying information flow with beliefs
 Cornell University
, 2006
"... To reason about information flow, a new model is developed that describes how attacker beliefs change due to the attacker’s observation of the execution of a probabilistic (or deterministic) program. The model enables compositional reasoning about information flow from attacks involving sequences of ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
(Show Context)
To reason about information flow, a new model is developed that describes how attacker beliefs change due to the attacker’s observation of the execution of a probabilistic (or deterministic) program. The model enables compositional reasoning about information flow from attacks involving sequences of interactions. The model also supports a new metric for quantitative information flow that measures accuracy of an attacker’s beliefs. Applying this new metric reveals inadequacies of traditional information flow metrics, which are based on reduction of uncertainty. However, the new metric is sufficiently general that it can be instantiated to measure either accuracy or uncertainty. The new metric can also be used to reason about misinformation; deterministic programs are shown to be incapable of producing misinformation. Additionally, programs in which nondeterministic choices are made by insiders, who collude with attackers, can be analyzed. 1
Quantum Weakest Preconditions
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2005
"... We develop a notion of predicate transformer and, in particular, the weakest precondition, appropriate for quantum computation. We show that there is a Stonetype duality between the usual statetransformer semantics and the weakest precondition semantics. Rather than trying to reduce quantum comput ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
We develop a notion of predicate transformer and, in particular, the weakest precondition, appropriate for quantum computation. We show that there is a Stonetype duality between the usual statetransformer semantics and the weakest precondition semantics. Rather than trying to reduce quantum computation to probabilistic programming we develop a notion that is directly taken from concepts used in quantum computation. The proof that weakest preconditions exist for completely positive maps follows immediately from the Kraus representation theorem. As an example we give the semantics of Selinger’s language in terms of our weakest preconditions. We also cover some specific situations and exhibit an interesting link with stabilizers.
Derivation of Randomized Sorting and Selection Algorithms
, 1993
"... In this paper we systematically derive randomized algorithms (both sequential and parallel) for sorting and selection from basic principles and fundamental techniques like random sampling. We prove several sampling lemmas which will find independent applications. The new algorithms derived here are ..."
Abstract

Cited by 28 (24 self)
 Add to MetaCart
In this paper we systematically derive randomized algorithms (both sequential and parallel) for sorting and selection from basic principles and fundamental techniques like random sampling. We prove several sampling lemmas which will find independent applications. The new algorithms derived here are the most efficient known. From among other results, we have an efficient algorithm for sequential sorting. The problem of sorting has attracted so much attention because of its vital importance. Sorting with as few comparisons as possible while keeping the storage size minimum is a long standing open problem. This problem is referred to as ‘the minimum storage sorting ’ [10] in the literature. The previously best known minimum storage sorting algorithm is due to Frazer and McKellar [10]. The expected number of comparisons made by this algorithm is n log n + O(n log log n). The algorithm we derive in this paper makes only an expected n log n + O(n ω(n)) number of comparisons, for any function ω(n) that tends to infinity. A variant of this algorithm makes no more than n log n + O(n log log n) comparisons on any input of size n with overwhelming probability. We also prove high probability bounds for several randomized algorithms for which only expected bounds have been proven so far.
Verifying Quantitative Reliability for Programs That Execute on Unreliable Hardware
"... Emerging highperformance architectures are anticipated to contain unreliable components that may exhibit soft errors, which silently corrupt the results of computations. Full detection and masking of soft errors is challenging, expensive, and, for some applications, unnecessary. For example, approx ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
(Show Context)
Emerging highperformance architectures are anticipated to contain unreliable components that may exhibit soft errors, which silently corrupt the results of computations. Full detection and masking of soft errors is challenging, expensive, and, for some applications, unnecessary. For example, approximate computing applications (such as multimedia processing, machine learning, and big data analytics) can often naturally tolerate soft errors. We present Rely, a programming language that enables developers to reason about the quantitative reliability of an application – namely, the probability that it produces the correct result when executed on unreliable hardware. Rely allows developers to specify the reliability requirements for each value that a function produces. We present a static quantitative reliability analysis that verifies quantitative requirements on the reliability of an application, enabling a developer to perform sound and verified reliability engineering. The analysis takes a Rely program with a reliability specification and a hardware specification that characterizes the reliability of the underlying hardware components and verifies that the program satisfies its reliability specification when executed on the underlying unreliable hardware platform. We demonstrate the application of quantitative reliability analysis on six computations implemented
Algebraic Approaches to Nondeterminism  an Overview
 ACM Computing Surveys
, 1997
"... this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University
Characterising testing preorders for finite probabilistic processes
 In LICS’07: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, CA
"... In 1992 Wang & Larsen extended the may and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to find complete axiomatisations and alternative cha ..."
Abstract

Cited by 24 (9 self)
 Add to MetaCart
(Show Context)
In 1992 Wang & Larsen extended the may and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to find complete axiomatisations and alternative characterisations for these preorders. This paper solves both problems for finite processes with silent moves. It characterises the may preorder in terms of simulation, and the must preorder in terms of failure simulation. It also gives a characterisation of both preorders using a modal logic. Finally it axiomatises both preorders over a probabilistic version of CSP. 1.