Results 1 
2 of
2
Failure Of Brown Representability In Derived Categories
"... Let T be a triangulated category with coproducts, T c T the full subcategory of compact objects in T. If T is the homotopy category of spectra, Adams proved the following in [1]: All homological functors fT c g op ! Ab are the restrictions of representable functors on T, and all natural tr ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
Let T be a triangulated category with coproducts, T c T the full subcategory of compact objects in T. If T is the homotopy category of spectra, Adams proved the following in [1]: All homological functors fT c g op ! Ab are the restrictions of representable functors on T, and all natural transformations are the restrictions of morphisms in T. It has been something of a mystery, to what extent this generalises to other triangulated categories. In [36], it was proved that Adams' theorem remains true as long as T c is countable, but can fail in general. The failure exhibited was that there can be natural transformations not arising from maps in T. A puzzling open problem remained: Is every homological functor the restriction of a representable functor on T? In a recent paper, Beligiannis [5] made some progress. But in this article, we settle the problem. The answer is no. There are examples of derived categories T = D(R) of rings, and homological functors fT c g op ! Ab which are not restrictions of representables. Contents
AXIOMATIC STABLE HOMOTOPY — A SURVEY
, 2003
"... Abstract. We survey various approaches to axiomatic stable homotopy theory, with examples including derived categories, categories of (possibly equivariant or localized) spectra, and stable categories of modular representations of finite groups. We focus mainly on representability theorems, localisa ..."
Abstract
 Add to MetaCart
Abstract. We survey various approaches to axiomatic stable homotopy theory, with examples including derived categories, categories of (possibly equivariant or localized) spectra, and stable categories of modular representations of finite groups. We focus mainly on representability theorems, localisation, Bousfield classes, and nilpotence. 1.