Results 1  10
of
103
A tutorial on support vector machines for pattern recognition
 Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract

Cited by 3319 (12 self)
 Add to MetaCart
The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE Journal of Selected Topics in Signal Processing
, 2007
"... Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined wi ..."
Abstract

Cited by 524 (15 self)
 Add to MetaCart
(Show Context)
Abstract—Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a sparsenessinducing (ℓ1) regularization term.Basis pursuit, the least absolute shrinkage and selection operator (LASSO), waveletbased deconvolution, and compressed sensing are a few wellknown examples of this approach. This paper proposes gradient projection (GP) algorithms for the boundconstrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range of applications, often being significantly faster (in terms of computation time) than competing methods. Although the performance of GP methods tends to degrade as the regularization term is deemphasized, we show how they can be embedded in a continuation scheme to recover their efficient practical performance. A. Background I.
Support vector machines: Training and applications
 A.I. MEMO 1602, MIT A. I. LAB
, 1997
"... The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perc ..."
Abstract

Cited by 221 (3 self)
 Add to MetaCart
(Show Context)
The Support Vector Machine (SVM) is a new and very promising classification technique developed by Vapnik and his group at AT&T Bell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training technique for Polynomial, Radial Basis Function and MultiLayer Perceptron classifiers. The main idea behind the technique is to separate the classes with a surface that maximizes the margin between them. An interesting property of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction principle [23]. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight, are discussed in this paper. Since Structural Risk Minimization is an inductive principle that aims at minimizing a bound on the generalization error of a model, rather than minimizing the Mean Square Error over the data set (as Empirical Risk Minimization methods do), training a SVM to obtain the maximum margin classi er requires a different objective function. This objective function is then optimized by solving a largescale quadratic programming problem with linear and box constraints. The problem is considered challenging, because the quadratic form is completely dense, so the memory
CUTE: Constrained and unconstrained testing environment
, 1993
"... The purpose of this paper is to discuss the scope and functionality of a versatile environment for testing small and largescale nonlinear optimization algorithms. Although many of these facilities were originally produced by the authors in conjunction with the software package LANCELOT, we belie ..."
Abstract

Cited by 185 (3 self)
 Add to MetaCart
The purpose of this paper is to discuss the scope and functionality of a versatile environment for testing small and largescale nonlinear optimization algorithms. Although many of these facilities were originally produced by the authors in conjunction with the software package LANCELOT, we believe that they will be useful in their own right and should be available to researchers for their development of optimization software. The tools are available by anonymous ftp from a number of sources and may, in many cases, be installed automatically. The scope of a major collection of test problems written in the standard input format (SIF) used by the LANCELOT software package is described. Recognising that most software was not written with the SIF in mind, we provide tools to assist in building an interface between this input format and other optimization packages. These tools already provide a link between the SIF and an number of existing packages, including MINOS and OSL. In ad...
The connection between regularization operators and support vector kernels
, 1998
"... In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green’s Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, ..."
Abstract

Cited by 178 (42 self)
 Add to MetaCart
In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green’s Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regularization theory and corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed on periodical domains. As a byproduct we show that a large number of radial basis functions, namely conditionally positive definite
Newton's Method For Large BoundConstrained Optimization Problems
 SIAM JOURNAL ON OPTIMIZATION
, 1998
"... We analyze a trust region version of Newton's method for boundconstrained problems. Our approach relies on the geometry of the feasible set, not on the particular representation in terms of constraints. The convergence theory holds for linearlyconstrained problems, and yields global and super ..."
Abstract

Cited by 110 (5 self)
 Add to MetaCart
We analyze a trust region version of Newton's method for boundconstrained problems. Our approach relies on the geometry of the feasible set, not on the particular representation in terms of constraints. The convergence theory holds for linearlyconstrained problems, and yields global and superlinear convergence without assuming neither strict complementarity nor linear independence of the active constraints. We also show that the convergence theory leads to an efficient implementation for large boundconstrained problems.
MCPLIB: A Collection of Nonlinear Mixed Complementarity Problems
 Optimization Methods and Software
, 1994
"... The origins and some motivational details of a collection of nonlinear mixed complementarity problems are given. This collection serves two purposes. Firstly, it gives a uniform basis for testing currently available and new algorithms for mixed complementarity problems. Function and Jacobian evaluat ..."
Abstract

Cited by 88 (31 self)
 Add to MetaCart
(Show Context)
The origins and some motivational details of a collection of nonlinear mixed complementarity problems are given. This collection serves two purposes. Firstly, it gives a uniform basis for testing currently available and new algorithms for mixed complementarity problems. Function and Jacobian evaluations for the resulting problems are provided via a GAMS interface, making thorough testing of algorithms on practical complementarity problems possible. Secondly, it gives examples of how to formulate many popular problem formats as mixed complementarity problems and how to describe the resulting problems in GAMS format. We demonstrate the ease and power of formulating practical models in the MCP format. Given these examples, it is hoped that this collection will grow to include many problems that test complementarity algorithms more fully. The collection is available by anonymous ftp. Computational results using the PATH solver covering all of these problems are described. 1 Introduction R...
ConjugateGradient Preconditioning Methods for ShiftVariant PET Image Reconstruction
 IEEE Tr. Im. Proc
, 2002
"... Gradientbased iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian mat ..."
Abstract

Cited by 75 (31 self)
 Add to MetaCart
(Show Context)
Gradientbased iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shiftinvariant, i.e. for those with approximately blockToeplitz or blockcirculant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantumlimited optical imaging, the Hessian of the weighted leastsquares objective function is quite shiftvariant, and circulant preconditioners perform poorly. Additional shiftvariance is caused by edgepreserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shiftvariant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugategradient (CG) iteration. We also propose a new efficient method for the linesearch step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.
Image Mosaicing and Superresolution
, 2004
"... The thesis investigates the problem of how information contained in multiple, overlapping images of the same scene may be combined to produce images of superior quality. This area, generically titled frame fusion, offers the possibility of reducing noise, extending the field of view, removal of movi ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
(Show Context)
The thesis investigates the problem of how information contained in multiple, overlapping images of the same scene may be combined to produce images of superior quality. This area, generically titled frame fusion, offers the possibility of reducing noise, extending the field of view, removal of moving objects, removing blur, increasing spatial resolution and improving dynamic range. As such, this research has many applications in fields as diverse as forensic image restoration, computer generated special effects, video image compression, and digital video editing. An essential enabling step prior to performing frame fusion is image registration, by which an accurate estimate of the pointtopoint mapping between views is computed. A robust and efficient algorithm is described to automatically register multiple images using only information contained within the images themselves. The accuracy of this method, and the statistical assumptions upon which it relies, are investigated empirically. Two forms of framefusion are investigated. The first is image mosaicing, which is the alignment of multiple images into a single composition representing part of a 3D scene.
A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
 SIAM Journal on Scientific Computing
, 2010
"... Abstract. We propose a fast algorithm for solving the ℓ1regularized minimization problem minx∈R n µ‖x‖1 + ‖Ax − b ‖ 2 2 for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We propose a fast algorithm for solving the ℓ1regularized minimization problem minx∈R n µ‖x‖1 + ‖Ax − b ‖ 2 2 for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a firstorder iterative method called “shrinkage ” yields an estimate of the subset of components of x likely to be nonzero in an optimal solution. Restricting the decision variables x to this subset and fixing their signs at their current values reduces the ℓ1norm ‖x‖1 to a linear function of x. The resulting subspace problem, which involves the minimization of a smaller and smooth quadratic function, is solved in the second phase. Our code FPC AS embeds this basic twostage algorithm in a continuation (homotopy) approach by assigning a decreasing sequence of values to µ. This code exhibits stateoftheart performance both in terms of its speed and its ability to recover sparse signals. It can even recover signals that are not as sparse as required by current compressive sensing theory.