Results 1  10
of
14
Assembler to C Migration using the FermaT Transformation System
 In IEEE International Conference on Software Maintenance (ICSM’99
, 1999
"... The FermaT transformation system, based on research carried out over the last twelve years at Durham University and Software Migrations Ltd., is an industrialstrength formal transformation engine with many applications in program comprehension and language migration. This paper describes one applic ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
The FermaT transformation system, based on research carried out over the last twelve years at Durham University and Software Migrations Ltd., is an industrialstrength formal transformation engine with many applications in program comprehension and language migration. This paper describes one application of the system: the migration of IBM 370 Assembler code to equivalent, maintainable C code. We present an example of using the tool to migrate a small, but complex, assembler module to C with no manual intervention required. We briefly discuss a mass migration exercise where 1,925 assembler modules were sucessfully migrated to C code. Keywords: Assembler, Migration, Comprehension, Formal Methods, WSL, Wide Spectrum Language, Program Transformation, Legacy Systems, Restructuring.
Derivation of Data Intensive Algorithms by Formal Transformation: The SchorrWaite Graph Marking Algorithm
, 1996
"... In this paper we consider a particular class of algorithms which present certain difficulties to formal verification. These are algorithms which use a single data structure for two or more purposes, which combine program control information with other data structures or which are developed as a comb ..."
Abstract

Cited by 36 (25 self)
 Add to MetaCart
In this paper we consider a particular class of algorithms which present certain difficulties to formal verification. These are algorithms which use a single data structure for two or more purposes, which combine program control information with other data structures or which are developed as a combination of a basic idea with an implementation technique. Our approach is based on applying proven semanticspreserving transformation rules in a wide spectrum language. Starting with a set theoretical specification of "reachability" we are able to derive iterative and recursive graph marking algorithms using the "pointer switching" idea of Schorr and Waite. There have been several proofs of correctness of the SchorrWaite algorithm, and a small number of transformational developments of the algorithm. The great advantage of our approach is that we can derive the algorithm from its specification using only generalpurpose transformational rules: without the need for complicated induction arg...
Pigs from Sausages? Reengineering from Assembler to C via FermaT Transformations
 Science of Computer Programming, Special Issue on Program Transformation 52
, 2004
"... Software reengineering has been described as being "about as easy as reconstructing a pig from a sausage" [11]. But the development of program transformation theory, as embodied in the FermaT transformation system, has made this miraculous feat into a practical possibility. This paper desc ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
(Show Context)
Software reengineering has been described as being "about as easy as reconstructing a pig from a sausage" [11]. But the development of program transformation theory, as embodied in the FermaT transformation system, has made this miraculous feat into a practical possibility. This paper describes the theory...
Foundations for a Practical Theory of Program Refinement and Transformation
, 1994
"... A wide spectrum language is presented, which is designed to facilitate the proof of the correctness of refinements and transformations. Two different proof methods are introduced and used to prove some fundamental transformations, including a general induction rule (Lemma 3.9) which enables transfor ..."
Abstract

Cited by 21 (14 self)
 Add to MetaCart
A wide spectrum language is presented, which is designed to facilitate the proof of the correctness of refinements and transformations. Two different proof methods are introduced and used to prove some fundamental transformations, including a general induction rule (Lemma 3.9) which enables transformations of recursive and iterative programs to be proved by induction on their finite truncations. A theorem for proving the correctness of recursive implementations is presented (Theorem 3.21), which provides a method for introducing a loop, without requiring the user to provide a loop invariant. A powerful, general purpose, transformation for removing or introducing recursion is described and used in a case study (Section 5) in which we take a small, but highly complex, program and apply formal transformations in order to uncover an abstract specification of the behaviour of the program. The transformation theory supports a transformation system, called FermaT, in which the applicability conditions of each transformation (and hence the correctness of the result) are mechanically verified. These results together considerably simplify the construction of viable program transformation tools; practical consequences are briefly discussed.
Formal Methods to Aid the Evolution of Software
 International Journal of Software Engineering and Knowledge Engineering
, 1995
"... There is a vast collection of operational software systems which are vitally important to their users, yet are becoming increasingly difficult to maintain, enhance and keep up to date with rapidly changing requirements. For many of these so called legacy systems the option of throwing the system awa ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
(Show Context)
There is a vast collection of operational software systems which are vitally important to their users, yet are becoming increasingly difficult to maintain, enhance and keep up to date with rapidly changing requirements. For many of these so called legacy systems the option of throwing the system away an rewriting it from scratch is not economically viable. Methods are therefore urgently required which enable these systems to evolve in a controlled manner. The approach described in this paper uses formal proven program transformations, which preserve or refine the semantics of a program while changing its form. These transformations are applied to restructure ans simplify the legacy systems and to extract higherlevel representations. By using an appropriate sequence of transformations, the extracted representation is guaranteed to be equivalent to the code. The method is based on a formal wide spectrum language, called WSL, with accompanying formal method. Over the last ten years we h...
Reverse Engineering from Assembler to Formal Specifications via Program Transformations
, 2000
"... ..."
Inverse Engineering a simple Real Time program
, 1999
"... Reverse engineering of interruptdriven realtime programs with timing constraints is a particularly challenging research area, because the functional behaviour of a program, and the nonfunctional timing requirements, are implicit and can be very difficult to discover. However, in this paper we pre ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Reverse engineering of interruptdriven realtime programs with timing constraints is a particularly challenging research area, because the functional behaviour of a program, and the nonfunctional timing requirements, are implicit and can be very difficult to discover. However, in this paper we present a significant advance in this area, which is achieved by modelling realtime programs with interrupts in the wide spectrum language WSL. A small example program is modelled in this way, and formal program transformations are used to derive various timing constraints and to inverse engineer a formal specification of the program. (We use the term inverse engineering to mean reverse engineering achieved by formal program transformations).
Recursion Removal/Introduction by Formal Transformation: An Aid to Program Development and Program Comprehension
 Comput. J
, 1999
"... ..."
(Show Context)
Transformational Programming and the . . .
"... The transformational programming, method of algorithm derivation starts with a formal specification of the result to be achieved (which provides no indication of how the result is to be achieved), plus some informal ideas as to what techniques will be used in the implementation. The formal specific ..."
Abstract
 Add to MetaCart
The transformational programming, method of algorithm derivation starts with a formal specification of the result to be achieved (which provides no indication of how the result is to be achieved), plus some informal ideas as to what techniques will be used in the implementation. The formal specification is then transformed into an implementation, by means of correctnesspreserving refinement and transformation steps. The informal ideas are used to guide the selection of transformations to apply: since they only guide the selection of valid transformations, the ideas do not themselves have to be formalised. At any stage in the process, subspecifications can be extracted and transformed separately. The main difference between this approach and the invariant based programming approach (and similar stepwise refinement methods) is that loops can be introduced and manipulated while maintaining program correctness and with no need to derive loop invariants. Another difference is that at every stage in the process we are working with a correct program: there is never any need for a separate “verification” step. These factors help to ensure that the method is capable of scaling up to the dvelopment of large and complex software systems.
Formal Methods to Aid the Evolution of Software
, 2003
"... There is a vast collection of operational software systems which are vitally important to their users, yet are becoming increasingly difficult to maintain, enhance and keep up to date with rapidly changing requirements. For many of these so called legacy systems the option of throwing the system awa ..."
Abstract
 Add to MetaCart
(Show Context)
There is a vast collection of operational software systems which are vitally important to their users, yet are becoming increasingly difficult to maintain, enhance and keep up to date with rapidly changing requirements. For many of these so called legacy systems the option of throwing the system away an rewriting it from scratch is not economically viable. Methods are therefore urgently required which enable these systems to evolve in a controlled manner. The approach described in this paper uses formal proven program transformations, which preserve or refine the semantics of a program while changing its form. These transformations are applied to restructure ans simplify the legacy systems and to extract higherlevel representations. By using an appropriate sequence of transformations, the extracted representation is guaranteed to be equivalent to the code. The method is based on a formal wide spectrum language, called WSL, with accompanying formal method. Over the last ten years we have developed a large catalogue of proven transformations, together with mechanically verifiable applicability conditions. These have been applied to many software development, reverse engineering and maintenance problems. In this paper, we focus on the results of using this approach in the reverse engineering of medium scale, industrial software, written mostly in languages such as assembler and JOVIAL. Results from both benchmark algorithms and heavily modified, geriatric software are summarised. We conclude that formal methods have an important practical role in software evolution. 1