Results 1  10
of
27
System Description: Twelf  A MetaLogical Framework for Deductive Systems
 Proceedings of the 16th International Conference on Automated Deduction (CADE16
, 1999
"... . Twelf is a metalogical framework for the specification, implementation, and metatheory of deductive systems from the theory of programming languages and logics. It relies on the LF type theory and the judgmentsastypes methodology for specification [HHP93], a constraint logic programming interp ..."
Abstract

Cited by 315 (49 self)
 Add to MetaCart
. Twelf is a metalogical framework for the specification, implementation, and metatheory of deductive systems from the theory of programming languages and logics. It relies on the LF type theory and the judgmentsastypes methodology for specification [HHP93], a constraint logic programming interpreter for implementation [Pfe91], and the metalogic M2 for reasoning about object languages encoded in LF [SP98]. It is a significant extension and complete reimplementation of the Elf system [Pfe94]. Twelf is written in Standard ML and runs under SML of New Jersey and MLWorks on Unix and Window platforms. The current version (1.2) is distributed with a complete manual, example suites, a tutorial in the form of online lecture notes [Pfe], and an Emacs interface. Source and binary distributions are accessible via the Twelf home page http://www.cs.cmu.edu/~twelf. 1 The Twelf System The Twelf system is a tool for experimentation in the theory of programming languages and logics. It supports...
Automating the Meta Theory of Deductive Systems
, 2000
"... not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, a ..."
Abstract

Cited by 81 (17 self)
 Add to MetaCart
not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, and experimental results related to the areas of programming languages, type theory, and logics. Design: The metalogical framework extends the logical framework LF [HHP93] by a metalogic M + 2. This design is novel and unique since it allows higherorder encodings of deductive systems and induction principles to coexist. On the one hand, higherorder representation techniques lead to concise and direct encodings of programming languages and logic calculi. Inductive de nitions on the other hand allow the formalization of properties about deductive systems, such as the proof that an operational semantics preserves types or the proof that a logic is is a proof calculus whose proof terms are recursive functions that may be consistent.M +
An expressive, scalable type theory for certified code
 In ACM International Conference on Functional Programming
, 2002
"... Abstract We present the type theory LTT, intended to form a basis for typed target languages, providing an internal notion of logical proposition and proof. The inclusion of explicit proofs allows the type system to guarantee properties that would otherwise be incompatible with decidable type checki ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
Abstract We present the type theory LTT, intended to form a basis for typed target languages, providing an internal notion of logical proposition and proof. The inclusion of explicit proofs allows the type system to guarantee properties that would otherwise be incompatible with decidable type checking. LTT also provides linear facilities for tracking ephemeral properties that hold only for certain program states. Our type theory allows for reuse of typechecking software by casting a variety of type systems within a single language. We provide additional reuse with a framework for modular development of operational semantics. This framework allows independent type systems and their operational semantics to be joined together, automatically inheriting the type safety properties of those individual systems.
Tabled HigherOrder Logic Programming
 In 20th International Conference on Automated Deduction
, 2003
"... Elf is a general metalanguage for the specification and implementation of logical systems in the style of the logical framework LF. Based on a logic programming interpretation, it supports executing logical systems and reasoning with and about them, thereby reducing the effort required for each ..."
Abstract

Cited by 26 (11 self)
 Add to MetaCart
Elf is a general metalanguage for the specification and implementation of logical systems in the style of the logical framework LF. Based on a logic programming interpretation, it supports executing logical systems and reasoning with and about them, thereby reducing the effort required for each particular logical system. The traditional logic programming paradigm is extended by replacing firstorder terms with dependently typed terms and allowing implication and universal quantification in the bodies of clauses. These higherorder features allow us to model concisely and elegantly conditions on variables and the discharge of assumptions which are prevalent in many logical systems. However, many specifications are not executable under the traditional logic programming semantics and performance may be hampered by redundant computation. To address these problems, I propose a tabled higherorder logic programming interpretation for Elf. Some redundant computation is eliminated by memoizing subcomputation and reusing its result later. If we do not distinguish different proofs for a property, then search based on tabled logic programming is complete and terminates for programs with bounded recursion. In this proposal, I present a prooftheoretical characterization for tabled higherorder logic programming. It is the basis of the implemented prototype for tabled logic programming interpreter for Elf. Preliminary experiments indicate that many more logical specifications are executable under the tabled semantics. In addition, tabled computation leads to more efficient execution of programs. The goal of the thesis is to demonstrate that tabled logic programming allows us to efficiently automate reasoning with and about logical systems in the logical f...
Recursion for HigherOrder Encodings
"... This paper describes a calculus of partial recursive functions that range over arbitrary and possibly higherorder objects in LF [HHP93]. Its most novel features include recursion under lambdabinders and matching against dynamically introduced parameters. ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
This paper describes a calculus of partial recursive functions that range over arbitrary and possibly higherorder objects in LF [HHP93]. Its most novel features include recursion under lambdabinders and matching against dynamically introduced parameters.
Rewriting Logic as a Metalogical Framework
 Lecture Notes in Computer Science
, 2000
"... A metalogical framework is a logic with an associated methodology that is used to represent other logics and to reason about their metalogical properties. We propose that logical frameworks can be good metalogical frameworks when their logics support reective reasoning and their theories always ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
A metalogical framework is a logic with an associated methodology that is used to represent other logics and to reason about their metalogical properties. We propose that logical frameworks can be good metalogical frameworks when their logics support reective reasoning and their theories always have initial models. We present a concrete realization of this idea in rewriting logic. Theories in rewriting logic always have initial models and this logic supports reective reasoning. This implies that inductive reasoning is valid when proving properties about the initial models of theories in rewriting logic, and that we can use reection to reason at the metalevel about these properties. In fact, we can uniformly reect induction principles for proving metatheorems about rewriting logic theories and their parameterized extensions. We show that this reective methodology provides an eective framework for dierent, nontrivial, kinds of formal metatheoretic reasoning; one can...
Termination and Reduction Checking in the Logical Framework
 IN WORKSHOP OF AUTOMATION OF PROOFS BY MATHEMATICAL INDUCTION
, 2000
"... ..."
Combining generic judgments with recursive definitions
 in "23th Symp. on Logic in Computer Science", F. PFENNING (editor), IEEE Computer Society Press, 2008, p. 33–44, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf US
"... Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow di ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow direct, logicbased reasoning about such descriptions: the treatment of atomic judgments as fixed points (recursive definitions) and an encoding of binding constructs via generic judgments. However, the logics encompassing these two features have thus far treated them orthogonally. In particular, they have not contained the ability to form definitions of objectlogic properties that themselves depend on an intrinsic treatment of binding. We propose a new and simple integration of these features within an intuitionistic logic enhanced with induction over natural numbers and we show that the resulting logic is consistent. The pivotal part of the integration allows recursive definitions to define generic judgments in general and not just the simpler atomic judgments that are traditionally allowed. The usefulness of this logic is illustrated by showing how it can provide elegant treatments of objectlogic contexts that appear in proofs involving typing calculi and arbitrarily cascading substitutions in reducibility arguments.
The Fox Project: Advanced Language Technology for Extensible Systems
, 1998
"... It has been amply demonstrated in recent years that careful attention to the structure of systems software can lead to greater flexibility, reliability, and ease of implementation, without incurring an undue penalty in performance. It is our contention that advanced programming languages  particula ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
It has been amply demonstrated in recent years that careful attention to the structure of systems software can lead to greater flexibility, reliability, and ease of implementation, without incurring an undue penalty in performance. It is our contention that advanced programming languages  particularly languages with a mathematically rigorous semantics, and featuring higher order functions, polymorphic types, and a strong module system are ideally
suited to expressing such structure. Indeed, our previous research has shown that the use of an advanced programming language can have a fundamental effect on system design, leading naturally to system architectures that are
highly modular, efficient, and allow reuse of code
We are thus working to demonstrate the viability and ibenefts of advanced languages for programming real
world systems. and in particular Active Networks. To achieve this we have organized our research into the areas of language technology, safety infrastructure, compiler technology, and applications. This report describes the current plans for this effort which we refer to as the Fox project.
Implementing Typeful Program Transformations
"... The notion of program transformation is ubiquitous in programming language studies on interpreters, compilers, partial evaluators, etc. In order to implement a program transformation, we need to choose a representation in the meta language, that is, the programming language in which we construct p ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
The notion of program transformation is ubiquitous in programming language studies on interpreters, compilers, partial evaluators, etc. In order to implement a program transformation, we need to choose a representation in the meta language, that is, the programming language in which we construct programs, for representing object programs, that is, the programs in the object language on which the program transformation is to be performed. In practice, most representations chosen for typed...