Results 1  10
of
84
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 238 (49 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Nominal techniques in Isabelle/HOL
 Proceedings of the 20th International Conference on Automated Deduction (CADE20
, 2005
"... Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induc ..."
Abstract

Cited by 102 (14 self)
 Add to MetaCart
Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induction principle that requires to prove the lambdacase for fresh binders only. The main technical novelty of this work is that it is compatible with the axiomofchoice (unlike earlier nominal logic work by Pitts et al); thus we were able to implement all results in Isabelle/HOL and use them to formalise the standard proofs for ChurchRosser and strongnormalisation. Keywords. Lambdacalculus, nominal logic, structural induction, theoremassistants.
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 86 (28 self)
 Add to MetaCart
(Show Context)
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
A Concurrent Logical Framework II: Examples and Applications
, 2002
"... CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives # of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the ..."
Abstract

Cited by 59 (35 self)
 Add to MetaCart
(Show Context)
CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives # of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #.
Focusing the inverse method for linear logic
 Proceedings of CSL 2005
, 2005
"... 1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10 ..."
Abstract

Cited by 51 (15 self)
 Add to MetaCart
(Show Context)
1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10
Deciding Type Equivalence in a Language with Singleton Kinds
 In TwentySeventh ACM Symposium on Principles of Programming Languages
, 2000
"... Work on the TILT compiler for Standard ML led us to study a language with singleton kinds: S(A) is the kind of all types provably equivalent to the type A. Singletons are interesting because they provide a very general form of definitions for type variables, allow finegrained control of type comput ..."
Abstract

Cited by 45 (7 self)
 Add to MetaCart
Work on the TILT compiler for Standard ML led us to study a language with singleton kinds: S(A) is the kind of all types provably equivalent to the type A. Singletons are interesting because they provide a very general form of definitions for type variables, allow finegrained control of type computations, and allow many equational constraints to be expressed within the type system.
Ordered Linear Logic and Applications
, 2001
"... This work is dedicated to my parents. Acknowledgments Firstly, and foremost, I would like to thank my principal advisor, Frank Pfenning, for his patience with me, and for teaching me most of what I know about logic and type theory. I would also like to acknowledge some useful discussions with Kevin ..."
Abstract

Cited by 39 (0 self)
 Add to MetaCart
(Show Context)
This work is dedicated to my parents. Acknowledgments Firstly, and foremost, I would like to thank my principal advisor, Frank Pfenning, for his patience with me, and for teaching me most of what I know about logic and type theory. I would also like to acknowledge some useful discussions with Kevin Watkins which led me to simplify some of this work. Finally, I would like to thank my other advisor, John Reynolds, for all his kindness and support over the last five years. Abstract This thesis introduces a new logical system, ordered linear logic, which combines reasoning with unrestricted, linear, and ordered hypotheses. The logic conservatively extends (intuitionistic) linear logic, which contains both unrestricted and linear hypotheses, with a notion of ordered hypotheses. Ordered hypotheses must be used exactly once, subject to the order in which they were assumed (i.e., their order cannot be changed during the course of a derivation). This ordering constraint allows for logical representations of simple data structures such as stacks and queues. We construct ordered linear logic in the style of MartinL&quot;of from the basic notion of a hypothetical judgement. We then show normalization for the system by constructing a sequent calculus presentation and proving cutelimination of the sequent system.
Extensional equivalence and singleton types
 ACM Transactions on Computational Logic
"... We study the λΠΣS ≤ calculus, which contains singleton types S(M) classifying terms of base type provably equivalent to the term M. The system includes dependent types for pairs and functions (Σ and Π) and a subtyping relation induced by regarding singletons as subtypes of the base type. The decidab ..."
Abstract

Cited by 38 (8 self)
 Add to MetaCart
We study the λΠΣS ≤ calculus, which contains singleton types S(M) classifying terms of base type provably equivalent to the term M. The system includes dependent types for pairs and functions (Σ and Π) and a subtyping relation induced by regarding singletons as subtypes of the base type. The decidability of type checking for this language is nonobvious, since to type check we must be able to determine equivalence of wellformed terms. But in the presence of singleton types, the provability of an equivalence judgment Γ ⊢ M1 ≡ M2: A can depend both on the typing context Γ and on the particular type A at which M1 and M2 are compared. We show how to prove decidability of term equivalence, hence of type checking, in λΠΣS ≤ by exhibiting a typedirected algorithm for directly computing normal forms. The correctness of normalization is shown using an unusual variant of Kripke logical relations organized around sets; rather than defining a logical equivalence relation, we work directly with (subsets of) the corresponding equivalence classes. We then provide a more efficient algorithm for checking type equivalence without constructing normal forms. We also show that type checking, subtyping, and all other judgments of the system are decidable.
A languagebased approach to functionally correct imperative programming
 IN PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING (ICFP05
, 2005
"... In this paper a languagebased approach to functionally correct imperative programming is proposed. The approach is based on a programming language called RSP1, which combines dependent types, general recursion, and imperative features in a typesafe way, while preserving decidability of type checki ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
In this paper a languagebased approach to functionally correct imperative programming is proposed. The approach is based on a programming language called RSP1, which combines dependent types, general recursion, and imperative features in a typesafe way, while preserving decidability of type checking. The methodology used is that of internal verification, where programs manipulate programmersupplied proofs explicitly as data. The fundamental technical idea of RSP1 is to identify problematic operations as impure, and keep them out of dependent types. The resulting language is powerful enough to verify statically nontrivial properties of imperative and functional programs. The paper presents the ideas through the examples of statically verified merge sort, statically verified imperative binary search trees, and statically verified directed acyclic graphs. This paper is an extended version of [30].
An expressive, scalable type theory for certified code
 In ACM International Conference on Functional Programming
, 2002
"... Abstract We present the type theory LTT, intended to form a basis for typed target languages, providing an internal notion of logical proposition and proof. The inclusion of explicit proofs allows the type system to guarantee properties that would otherwise be incompatible with decidable type checki ..."
Abstract

Cited by 34 (3 self)
 Add to MetaCart
(Show Context)
Abstract We present the type theory LTT, intended to form a basis for typed target languages, providing an internal notion of logical proposition and proof. The inclusion of explicit proofs allows the type system to guarantee properties that would otherwise be incompatible with decidable type checking. LTT also provides linear facilities for tracking ephemeral properties that hold only for certain program states. Our type theory allows for reuse of typechecking software by casting a variety of type systems within a single language. We provide additional reuse with a framework for modular development of operational semantics. This framework allows independent type systems and their operational semantics to be joined together, automatically inheriting the type safety properties of those individual systems.