Results 1  10
of
14
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF c ..."
Abstract

Cited by 217 (44 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
Automating the Meta Theory of Deductive Systems
, 2000
"... not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, a ..."
Abstract

Cited by 81 (17 self)
 Add to MetaCart
not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, and experimental results related to the areas of programming languages, type theory, and logics. Design: The metalogical framework extends the logical framework LF [HHP93] by a metalogic M + 2. This design is novel and unique since it allows higherorder encodings of deductive systems and induction principles to coexist. On the one hand, higherorder representation techniques lead to concise and direct encodings of programming languages and logic calculi. Inductive de nitions on the other hand allow the formalization of properties about deductive systems, such as the proof that an operational semantics preserves types or the proof that a logic is is a proof calculus whose proof terms are recursive functions that may be consistent.M +
Unification via Explicit Substitutions: The Case of HigherOrder Patterns
 PROCEEDINGS OF JICSLP'96
, 1998
"... In [6] we have proposed a general higherorder unification method using a theory of explicit substitutions and we have proved its completeness. In this paper, we investigate the case of higherorder patterns as introduced by Miller. We show that our general algorithm specializes in a very convenient ..."
Abstract

Cited by 56 (14 self)
 Add to MetaCart
In [6] we have proposed a general higherorder unification method using a theory of explicit substitutions and we have proved its completeness. In this paper, we investigate the case of higherorder patterns as introduced by Miller. We show that our general algorithm specializes in a very convenient way to patterns. We also sketch an efficient implementation of the abstract algorithm and its generalization to constraint simplification, which has yielded good experimental results at the core of a higherorder constraint logic programming language.
Theory Interpretation in Simple Type Theory
 HIGHERORDER ALGEBRA, LOGIC, AND TERM REWRITING, VOLUME 816 OF LECTURE NOTES IN COMPUTER SCIENCE
, 1993
"... Theory interpretation is a logical technique for relating one axiomatic theory to another with important applications in mathematics and computer science as well as in logic itself. This paper presents a method for theory interpretation in a version of simple type theory, called lutins, which admit ..."
Abstract

Cited by 36 (17 self)
 Add to MetaCart
Theory interpretation is a logical technique for relating one axiomatic theory to another with important applications in mathematics and computer science as well as in logic itself. This paper presents a method for theory interpretation in a version of simple type theory, called lutins, which admits partial functions and subtypes. The method is patterned on the standard approach to theory interpretation in rstorder logic. Although the method is based on a nonclassical version of simple type theory, it is intended as a guide for theory interpretation in classical simple type theories as well as in predicate logics with partial functions.
An Empirical Study of the Runtime Behavior of HigherOrder Logic Programs
 University of Pennsylvania. Available as
, 1992
"... this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 28 (7 self)
 Add to MetaCart
this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.
A module calculus for Pure Type Systems
, 1996
"... Several proofassistants rely on the very formal basis of Pure Type Systems. However, some practical issues raised by the development of large proofs lead to add other features to actual implementations for handling namespace management, for developing reusable proof libraries and for separate verif ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
Several proofassistants rely on the very formal basis of Pure Type Systems. However, some practical issues raised by the development of large proofs lead to add other features to actual implementations for handling namespace management, for developing reusable proof libraries and for separate verification of distincts parts of large proofs. Unfortunately, few theoretical basis are given for these features. In this paper we propose an extension of Pure Type Systems with a module calculus adapted from SMLlike module systems for programming languages. Our module calculus gives a theoretical framework addressing the need for these features. We show that our module extension is conservative, and that type inference in the module extension of a given PTS is decidable under some hypotheses over the considered PTS.
Algorithms for Equality and Unification in the Presence of Notational Definitions
 Types for Proofs and Programs
, 1998
"... this paper we investigate the interaction of notational definitions with algorithms for testing equality and unification. We propose a syntactic criterion on definitions which avoids their expansion in many cases without losing soundness or completeness with respect to fi fficonversion. Our setting ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
this paper we investigate the interaction of notational definitions with algorithms for testing equality and unification. We propose a syntactic criterion on definitions which avoids their expansion in many cases without losing soundness or completeness with respect to fi fficonversion. Our setting is the dependently typed calculus [HHP93], but, with minor modifications, our results should apply to richer type theories and logics. The question when definitions need to be expanded is surprisingly subtle and of great practical importance. Most algorithms for equality and unification rely on decomposing a problem
An applicative module calculus
 In Theory and Practice of Software Development 97, Lecture Notes in Computer Science
, 1997
"... Abstract. The SMLlike module systems are small typed languages of their own. As is, one would expect a proof of their soundness following from a proof of subject reduction. Unfortunately, the subjectreduction property and the preservation of type abstraction seem to be incompatible. As a consequen ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
Abstract. The SMLlike module systems are small typed languages of their own. As is, one would expect a proof of their soundness following from a proof of subject reduction. Unfortunately, the subjectreduction property and the preservation of type abstraction seem to be incompatible. As a consequence, in relevant module systems, the theoretical study of reductions is meaningless, and for instance, the question of normalization of module expressions can not even be considered. In this paper, we analyze this problem as a misunderstanding of the notion of module definition. We build a variant of the SML module system — inspired from recent works by Leroy, Harper, and Lillibridge — which enjoys the subject reduction property. Type abstraction — achieved through an explicit declaration of the signature of a module at its definition — is preserved. This was the initial motivation. Besides our system enjoys other typetheoretic properties: the calculus is strongly normalizing, there are no syntactic restrictions on module paths, it enjoys a purely applicative semantics, every module has a principal type, and type inference is decidable. Neither Leroy’s system nor Harper and Lillibridge’s system has all of them. 1
Structured theory presentations and logic representations
 ANNALS OF PURE AND APPLIED LOGIC
, 1994
"... The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the representation of that logic in the framework. An important tool for controlling search in an object logic, the need for which is motivated by the difficulty of reasoning about large and complex systems, is the use of structured theory presentations. In this paper a rudimentary language of structured theory presentations is presented, and the use of this structure in proof search for an arbitrary object logic is explored. The behaviour of structured theory presentations under representation in a logical framework is studied, focusing on the problem of "lifting" presentations from the object logic to the metalogic of the framework. The topic of imposing structure on logic presentations...
NuprlLight: An implementation framework for higherorder logics
 IN 14TH INTERNATIONAL CONFERENCE ON AUTOMATED DEDUCTION
, 1997
"... Recent developments in higherorder logics and theorem prover design have led to an ..."
Abstract

Cited by 12 (7 self)
 Add to MetaCart
Recent developments in higherorder logics and theorem prover design have led to an