Results 11  20
of
696
An Indexed Model of Recursive Types for Foundational ProofCarrying Code
 ACM Transactions on Programming Languages and Systems
, 2000
"... The proofs of "traditional" proof carrying code (PCC) are typespecialized in the sense that they require axioms about a specific type system. In contrast, the proofs of foundational PCC explicitly define all required types and explicitly prove all the required properties of those types as ..."
Abstract

Cited by 134 (13 self)
 Add to MetaCart
The proofs of "traditional" proof carrying code (PCC) are typespecialized in the sense that they require axioms about a specific type system. In contrast, the proofs of foundational PCC explicitly define all required types and explicitly prove all the required properties of those types assuming only a fixed foundation of mathematics such as higherorder logic. Foundational PCC is both more flexible and more secure than typespecialized PCC.
Primitive Recursion for HigherOrder Abstract Syntax
 Theoretical Computer Science
, 1997
"... ..."
Simple Consequence Relations
 Information and Computation
, 1991
"... We provide a general investigation of Logic in which the notion of a simple consequence relation is taken to be fundamental. Our notion is more general than the usual one since we give up monotonicity and use multisets rather than sets. We use our notion for characterizing several known logics (incl ..."
Abstract

Cited by 100 (18 self)
 Add to MetaCart
We provide a general investigation of Logic in which the notion of a simple consequence relation is taken to be fundamental. Our notion is more general than the usual one since we give up monotonicity and use multisets rather than sets. We use our notion for characterizing several known logics (including Linear Logic and nonmonotonic logics) and for a general, semanticsindependent classification of standard connectives via equations on consequence relations (these include Girard's "multiplicatives" and "additives"). We next investigate the standard methods for uniformly representing consequence relations: Hilbert type, Natural Deduction and Gentzen type. The advantages and disadvantages of using each system and what should be taken as good representations in each case (especially from the implementation point of view) are explained. We end by briefly outlining (with examples) some methods for developing nonuniform, but still efficient, representations of consequence relations.
The ProofTheory and Semantics of Intuitionistic Modal Logic
, 1994
"... Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpret ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
Possible world semantics underlies many of the applications of modal logic in computer science and philosophy. The standard theory arises from interpreting the semantic definitions in the ordinary metatheory of informal classical mathematics. If, however, the same semantic definitions are interpreted in an intuitionistic metatheory then the induced modal logics no longer satisfy certain intuitionistically invalid principles. This thesis investigates the intuitionistic modal logics that arise in this way. Natural deduction systems for various intuitionistic modal logics are presented. From one point of view, these systems are selfjustifying in that a possible world interpretation of the modalities can be read off directly from the inference rules. A technical justification is given by the faithfulness of translations into intuitionistic firstorder logic. It is also established that, in many cases, the natural deduction systems induce wellknown intuitionistic modal logics, previously given by Hilbertstyle axiomatizations. The main benefit of the natural deduction systems over axiomatizations is their
Reasoning with higherorder abstract syntax in a logical framework
, 2008
"... Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natu ..."
Abstract

Cited by 91 (24 self)
 Add to MetaCart
Logical frameworks based on intuitionistic or linear logics with highertype quantification have been successfully used to give highlevel, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that evaluation preserves types. One challenge in developing a framework for such reasoning is that higherorder abstract syntax (HOAS), an elegant and declarative treatment of objectlevel abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a metalogic that can be used to reason about judgments coded using HOAS; this metalogic is an extension of a simple intuitionistic logic that admits higherorder quantification over simply typed λterms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of definition is a prooftheoretic device that allows certain theories to be treated as “closed ” or as defining fixed points. We explore the difficulties of formal metatheoretic analysis of HOAS encodings by considering encodings of intuitionistic and linear logics, and formally derive the admissibility of cut for important subsets of these logics. We then propose an approach to avoid the apparent tradeoff between the benefits of higherorder abstract syntax and the ability to analyze the resulting encodings. We illustrate this approach through examples involving the simple functional and imperative programming languages PCF and PCF:=. We formally derive such properties as unicity of typing, subject reduction, determinacy of evaluation, and the equivalence of transition semantics and natural semantics presentations of evaluation.
A LanguageBased Approach to Security
 INFORMATICS: 10 YEARS BACK, 10 YEARS AHEAD
, 2000
"... Languagebased security leverages program analysis and program rewriting to enforce security policies. The approach promises efficient enforcement of finegrained access control policies and depends on a trusted computing base of only modest size. This paper surveys progress and prospects for the ar ..."
Abstract

Cited by 88 (0 self)
 Add to MetaCart
Languagebased security leverages program analysis and program rewriting to enforce security policies. The approach promises efficient enforcement of finegrained access control policies and depends on a trusted computing base of only modest size. This paper surveys progress and prospects for the area, giving overviews of inlined reference monitors, certifying compilers, and advances in type theory.