Results 1 
8 of
8
How Good is Local Type Inference?
, 1999
"... A partial type inference technique should come with a simple and precise specification, so that users predict its behavior and understand the error messages it produces. Local type inference techniques attain this simplicity by inferring missing type information only from the types of adjacent synta ..."
Abstract

Cited by 166 (4 self)
 Add to MetaCart
A partial type inference technique should come with a simple and precise specification, so that users predict its behavior and understand the error messages it produces. Local type inference techniques attain this simplicity by inferring missing type information only from the types of adjacent syntax nodes, without using global mechanisms such as unification variables. The paper reports on our experience with programming in a fullfeatured programming language including higherorder polymorphism, subtyping, parametric datatypes, and local type inference. On the positive side, our experiments on several nontrivial examples confirm previous hopes for the practicality of the type inference method. On the negative side, some proposed extensions mitigating known expressiveness problems turn out to be unsatisfactory on close examination. 1 Introduction It is widely believed that a polymorphic programming language should provide some form of type inference, to avoid discouraging programming ...
Type Inference with Polymorphic Recursion
 Transactions on Programming Languages and Systems
, 1991
"... The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. H ..."
Abstract

Cited by 135 (0 self)
 Add to MetaCart
The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. He proved the resulting type system, which we call the MilnerMycroft Calculus, sound with respect to Milner’s semantics, and showed that it preserves the principal typing property of the DamasMilner Calculus. The extension is of practical significance in typed logic programming languages and, more generally, in any language with (mutually) recursive definitions. In this paper we show that the type inference problem for the MilnerMycroft Calculus is logspace equivalent to semiunification, the problem of solving subsumption inequations between firstorder terms. This result has been proved independently by Kfoury et al. In connection with the recently established undecidability of semiunification this implies that typability in the MilnerMycroft Calculus is undecidable. We present some reasons why type inference with polymorphic recursion appears to be practical despite its undecidability. This also sheds some light on the observed practicality of ML
Putting Type Annotations to Work
, 1996
"... We study an extension of the HindleyMilner system with explicit type scheme annotations and type declarations. The system can express polymorphic function arguments, userdefined data types with abstract components, and structure types with polymorphic fields. More generally, all programs of the po ..."
Abstract

Cited by 94 (1 self)
 Add to MetaCart
We study an extension of the HindleyMilner system with explicit type scheme annotations and type declarations. The system can express polymorphic function arguments, userdefined data types with abstract components, and structure types with polymorphic fields. More generally, all programs of the polymorphic lambda calculus can be encoded by a translation between typing derivations. We show that type reconstruction in this system can be reduced to the decidable problem of firstorder unification under a mixed prefix.
Programming with Intersection Types and Bounded Polymorphism
, 1991
"... representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 67 (4 self)
 Add to MetaCart
representing the official policies, either expressed or implied, of the U.S. Government.
Explaining Type Inference
 Science of Computer Programming
, 1995
"... Type inference is the compiletime process of reconstructing missing type information in a program based on the usage of its variables. ML and Haskell are two languages where this aspect of compilation has enjoyed some popularity, allowing type information to be omitted while static type checking is ..."
Abstract

Cited by 53 (0 self)
 Add to MetaCart
Type inference is the compiletime process of reconstructing missing type information in a program based on the usage of its variables. ML and Haskell are two languages where this aspect of compilation has enjoyed some popularity, allowing type information to be omitted while static type checking is still performed. Type inference may be expected to have some application in the prototyping and scripting languages which are becoming increasingly popular. A difficulty with type inference is the confusing and sometimes counterintuitive diagnostics produced by the type checker as a result of type errors. A modification of the HindleyMilner type inference algorithm is presented, which allows the specific reasoning which led to a program variable having a particular type to be recorded for type explanation. This approach is close to the intuitive process used in practice for debugging type errors. 1 Introduction Type inference refers to the compiletime process of reconstructing missing t...
Fast and Effective Optimization of Statically Typed ObjectOriented Languages
, 1997
"... In this dissertation, we show how a relatively simple and extremely fast interprocedural optimization algorithm can be used to optimize many of the expensive features of statically typed, objectoriented languages  in particular, C++ and Java. We present a new program analysis algorithm, Rapid ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
In this dissertation, we show how a relatively simple and extremely fast interprocedural optimization algorithm can be used to optimize many of the expensive features of statically typed, objectoriented languages  in particular, C++ and Java. We present a new program analysis algorithm, Rapid Type Analysis, and show that it is fast both in theory and in practice, and significantly outperforms other "fast" algorithms for virtual function call resolution. We present optimization algorithms for the resolution of virtual function calls, conversion of virtual inheritance to direct inheritance, elimination of dynamic casts and dynamic type checks, and removal of object synchronization. These algorithms are all presented within a common framework that allows them to be driven by the information collected by Rapid Type Analysis, or by some other type analysis algorithm. Collectively, the optimizations in this dissertation free the programmer from having to sacrifice modularity and extensibility for performance. Instead, the programmer can freely make use of the most powerful features of objectoriented programming, since the optimizer will remove unnecessary extensibility from the program.
On the undecidability of partial polymorphic type reconstruction
 FUNDAMENTA INFORMATICAE
, 1992
"... We prove that partial type reconstruction for the pure polymorphic *calculus is undecidable by a reduction from the secondorder unification problem, extending a previous result by H.J. Boehm. We show further that partial type reconstruction remains undecidable even in a very small predicative f ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
We prove that partial type reconstruction for the pure polymorphic *calculus is undecidable by a reduction from the secondorder unification problem, extending a previous result by H.J. Boehm. We show further that partial type reconstruction remains undecidable even in a very small predicative fragment of the polymorphic *calculus, which implies undecidability of partial type reconstruction for * ML as introduced by Harper, Mitchell, and Moggi.
Towards a Practical Programming Language Based on the Polymorphic Lambda Calculus
, 1989
"... The value of polymorphism in programming languages has been demonstrated by languages such as ML [19]. Recent e cient implementations of ML have shown that a language with implicit polymorphism can be practical [1]. The core of ML's type system is limited, however, by the fact that only instances of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The value of polymorphism in programming languages has been demonstrated by languages such as ML [19]. Recent e cient implementations of ML have shown that a language with implicit polymorphism can be practical [1]. The core of ML's type system is limited, however, by the fact that only instances of polymorphic functions may be passed as arguments to other functions, but