Results 1  10
of
170
Primaldual approximation algorithms for metric facility location and kmedian problems
 Journal of the ACM
, 1999
"... ..."
On the Placement of Web Server Replicas
 In Proceedings of IEEE INFOCOM
, 2001
"... Abstract—Recently there has been an increasing deployment of content distribution networks (CDNs) that offer hosting services to Web content providers. CDNs deploy a set of servers distributed throughout the Internet and replicate provider content across these servers for better performance and avai ..."
Abstract

Cited by 288 (8 self)
 Add to MetaCart
Abstract—Recently there has been an increasing deployment of content distribution networks (CDNs) that offer hosting services to Web content providers. CDNs deploy a set of servers distributed throughout the Internet and replicate provider content across these servers for better performance and availability than centralized provider servers. Existing work on CDNs has primarily focused on techniques for efficiently redirecting user requests to appropriate CDN servers to reduce request latency and balance load. However, little attention has been given to the development of placement strategies for Web server replicas to further improve CDN performance. In this paper, we explore the problem of Web server replica placement in detail. We develop several placement algorithms that use workload information, such as client latency and request rates, to make informed placement decisions. We then evaluate the placement algorithms using both synthetic and real network topologies, as well as Web server traces, and show that the placement of Web replicas is crucial to CDN performance. We also address a number of practical issues when using these algorithms, such as their sensitivity to imperfect knowledge about client workload and network topology, the stability of the input data, and methods for obtaining the input. Keywords—World Wide Web, replication, replica placement algorithm, content distribution network (CDN). I.
Approximation Algorithms for Projective Clustering
 Proceedings of the ACM SIGMOD International Conference on Management of data, Philadelphia
, 2000
"... We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w ..."
Abstract

Cited by 246 (21 self)
 Add to MetaCart
We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w be the smallest value so that S can be covered by k hyperstrips (resp. hypercylinders), each of width (resp. diameter) at most w : In the plane, the two problems are equivalent. It is NPHard to compute k planar strips of width even at most Cw ; for any constant C ? 0 [50]. This paper contains four main results related to projective clustering: (i) For d = 2, we present a randomized algorithm that computes O(k log k) strips of width at most 6w that cover S. Its expected running time is O(nk 2 log 4 n) if k 2 log k n; it also works for larger values of k, but then the expected running time is O(n 2=3 k 8=3 log 4 n). We also propose another algorithm that computes a c...
Local search heuristics for kmedian and facility location problems
, 2001
"... ÔÖÓ��ÙÖ�ØÓØ���ÐÓ��ÐÓÔØ�ÑÙÑ�ÓÖ�Ñ����ÒÛ � Ö�Ø�ÓÓ��ÐÓ�ÐÐÝÓÔØ�ÑÙÑ×ÓÐÙØ�ÓÒÓ�Ø��Ò��Ù×�Ò�Ø�� × ÐÓ�Ð�ØÝ��ÔÓ��ÐÓ�Ð×��Ö�ÔÖÓ��ÙÖ��×Ø��Ñ�Ü�ÑÙÑ �Ñ����Ò�Ò����Ð�ØÝÐÓ�Ø�ÓÒÔÖÓ�Ð�Ñ×Ï���¬Ò�Ø� � ÁÒØ��×Ô�Ô�ÖÛ��Ò�ÐÝÞ�ÐÓ�Ð×��Ö���ÙÖ�×Ø�×�ÓÖØ�� ×�ÓÛØ��ØÐÓ�Ð×��Ö�Û�Ø�×Û�Ô×��×�ÐÓ�Ð�ØÝ��ÔÓ � ×�ÑÙÐØ�Ò�ÓÙ×ÐÝØ��ÒØ��ÐÓ�Ð�ØÝ��ÔÓ�Ø�� ..."
Abstract

Cited by 234 (10 self)
 Add to MetaCart
ÔÖÓ��ÙÖ�ØÓØ���ÐÓ��ÐÓÔØ�ÑÙÑ�ÓÖ�Ñ����ÒÛ � Ö�Ø�ÓÓ��ÐÓ�ÐÐÝÓÔØ�ÑÙÑ×ÓÐÙØ�ÓÒÓ�Ø��Ò��Ù×�Ò�Ø�� × ÐÓ�Ð�ØÝ��ÔÓ��ÐÓ�Ð×��Ö�ÔÖÓ��ÙÖ��×Ø��Ñ�Ü�ÑÙÑ �Ñ����Ò�Ò����Ð�ØÝÐÓ�Ø�ÓÒÔÖÓ�Ð�Ñ×Ï���¬Ò�Ø� � ÁÒØ��×Ô�Ô�ÖÛ��Ò�ÐÝÞ�ÐÓ�Ð×��Ö���ÙÖ�×Ø�×�ÓÖØ�� ×�ÓÛØ��ØÐÓ�Ð×��Ö�Û�Ø�×Û�Ô×��×�ÐÓ�Ð�ØÝ��ÔÓ � ×�ÑÙÐØ�Ò�ÓÙ×ÐÝØ��ÒØ��ÐÓ�Ð�ØÝ��ÔÓ�Ø��ÐÓ�Ð×��Ö � �Ü�ØÐÝ�Ï��ÒÛ�Ô�ÖÑ�ØÔ���Ð�Ø��×ØÓ��×Û�ÔÔ�� �ÑÔÖÓÚ�×Ø��ÔÖ�Ú�ÓÙ×�ÒÓÛÒ��ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÓÖØ�� × ÔÖÓ�Ð�Ñ�ÓÖÍÒ�Ô��Ø�Ø�����Ð�ØÝÐÓ�Ø�ÓÒÛ�×�ÓÛ ÔÖÓ��ÙÖ��×�Ü�ØÐÝ Ó�ÐÓ�Ð×��Ö��ÓÖ�Ñ����ÒØ��ØÔÖÓÚ���×��ÓÙÒ�� � Ô�Ö�ÓÖÑ�Ò��Ù�Ö�ÒØ��Û�Ø�ÓÒÐÝ�Ñ����Ò×Ì��×�Ð×Ó �ÔÌ��×�×Ø��¬Ö×Ø�Ò�ÐÝ×�× ×Û�ÔÔ�Ò�����Ð�ØÝ��×�ÐÓ�Ð�ØÝ��ÔÓ��Ü�ØÐÝÌ�� × �ÑÔÖÓÚ�×Ø����ÓÙÒ�Ó�ÃÓÖÙÔÓÐÙ�Ø�ÐÏ��Ð×ÓÓÒ ×���Ö��Ô��Ø�Ø�����Ð�ØÝÐÓ�Ø�ÓÒÔÖÓ�Ð�ÑÛ��Ö��� � Ø��ØÐÓ�Ð×��Ö�Û���Ô�ÖÑ�Ø×����Ò��ÖÓÔÔ�Ò��Ò� Ø�ÔÐ�ÓÔ��×Ó�����Ð�ØÝ�ÓÖØ��×ÔÖÓ�Ð�ÑÛ��ÒØÖÓ�Ù � ���Ð�ØÝ��×��Ô��ØÝ�Ò�Û��Ö��ÐÐÓÛ��ØÓÓÔ�ÒÑÙÐ ÐÓ�Ð×��Ö�Û���Ô�ÖÑ�Ø×Ø��×Ò�ÛÓÔ�Ö�Ø�ÓÒ��×�ÐÓ ���Ð�ØÝ�Ò��ÖÓÔ×Þ�ÖÓÓÖÑÓÖ����Ð�Ø��×Ï�ÔÖÓÚ�Ø��Ø �Ò�ÛÓÔ�Ö�Ø�ÓÒÛ���ÓÔ�Ò×ÓÒ�ÓÖÑÓÖ�ÓÔ��×Ó� � �Ð�ØÝ��Ô��ØÛ��Ò�Ò�� ÝÈ�ÖØ��ÐÐÝ×ÙÔÔÓÖØ���Ý���ÐÐÓÛ×��Ô�ÖÓÑÁÒ�Ó×Ý×Ì� � Ê�×��Ö�Ä� � ÒÓÐÓ���×ÄØ���Ò��ÐÓÖ � ÞËÙÔÔÓÖØ���Ý�ÊÇ������� � £È�ÖØ��ÐÐÝ×ÙÔÔÓÖØ���Ý���ÐÐÓÛ×��Ô�ÖÓÑÁ�ÅÁÒ���
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 209 (14 self)
 Add to MetaCart
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Incremental Clustering and Dynamic Information Retrieval
, 1997
"... Motivated by applications such as document and image classification in information retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a model called incremental clustering which is based on a careful analysis of the requirements of the information retri ..."
Abstract

Cited by 153 (5 self)
 Add to MetaCart
Motivated by applications such as document and image classification in information retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a model called incremental clustering which is based on a careful analysis of the requirements of the information retrieval application, and which should also be useful in other applications. The goal is to efficiently maintain clusters of small diameter as new points are inserted. We analyze several natural greedy algorithms and demonstrate that they perform poorly. We propose new deterministic and randomized incremental clustering algorithms which have a provably good performance. We complement our positive results with lower bounds on the performance of incremental algorithms. Finally, we consider the dual clustering problem where the clusters are of fixed diameter, and the goal is to minimize the number of clusters. 1 Introduction We consider the following problem: as a sequence of points from a metric...
A new greedy approach for facility location problems
"... We present a simple and natural greedy algorithm for the metric uncapacitated facility location problem achieving an approximation guarantee of 1.61 whereas the best previously known was 1.73. Furthermore, we will show that our algorithm has a property which allows us to apply the technique of Lagra ..."
Abstract

Cited by 116 (9 self)
 Add to MetaCart
We present a simple and natural greedy algorithm for the metric uncapacitated facility location problem achieving an approximation guarantee of 1.61 whereas the best previously known was 1.73. Furthermore, we will show that our algorithm has a property which allows us to apply the technique of Lagrangian relaxation. Using this property, we can nd better approximation algorithms for many variants of the facility location problem, such as the capacitated facility location problem with soft capacities and a common generalization of the kmedian and facility location problem. We will also prove a lower bound on the approximability of the kmedian problem.
Clustering data streams: Theory and practice
 IEEE TKDE
, 2003
"... Abstract—The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little ..."
Abstract

Cited by 106 (2 self)
 Add to MetaCart
Abstract—The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little memory, is crucial. We describe such a streaming algorithm that effectively clusters large data streams. We also provide empirical evidence of the algorithm’s performance on synthetic and real data streams. Index Terms—Clustering, data streams, approximation algorithms. 1
Nash Equilibria in Competitive Societies, with Applications to Facility Location, Traffic Routing and Auction
, 2002
"... We consider the following class of problems. The value of an outcome to a society is measured via a submodular utility function (submodularity has a natural economic interpretation: decreasing marginal utility). Decisions, however are controlled by noncooperative agents who seek to maximise their ..."
Abstract

Cited by 103 (4 self)
 Add to MetaCart
We consider the following class of problems. The value of an outcome to a society is measured via a submodular utility function (submodularity has a natural economic interpretation: decreasing marginal utility). Decisions, however are controlled by noncooperative agents who seek to maximise their own private utility. We present, under some basic assumptions, guarantees on the social performance of Nash equilibria. For submodular utility functions, any Nash equilibrium gives an expected social utility within a factor 2 of optimal, subject to a functiondependent additive term. For nondecreasing, submodular utility functions, any Nash equilibrium gives an expected social utility within a factor 1 + of optimal, where 0 1 is a number based upon the discrete curvature of the function. A condition under which all sets of social and private utility functions induce pure strategy Nash equilibria is presented. The case in which agents, themselves, make use of approximation algorithms in decision making is discussed and performance guarantees given. Finally we present some speci c problems that fall into our framework. These include the competitive versions of the facility location problem and kmedian problem, a maximisation version of the trac routing problem of Roughgarden and Tardos [16], and multipleitem auctions.