Results 1 
3 of
3
Parallelization of DivideandConquer by Translation to Nested Loops
 J. Functional Programming
, 1997
"... We propose a sequence of equational transformations and specializations which turns a divideandconquer skeleton in Haskell into a parallel loop nest in C. Our initial skeleton is often viewed as general divideandconquer. The specializations impose a balanced call tree, a fixed degree of the prob ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
We propose a sequence of equational transformations and specializations which turns a divideandconquer skeleton in Haskell into a parallel loop nest in C. Our initial skeleton is often viewed as general divideandconquer. The specializations impose a balanced call tree, a fixed degree of the problem division, and elementwise operations. Our goal is to select parallel implementations of divideandconquer via a spacetime mapping, which can be determined at compile time. The correctness of our transformations is proved by equational reasoning in Haskell; recursion and iteration are handled by induction. Finally, we demonstrate the practicality of the skeleton by expressing Strassen's matrix multiplication in it.
ContextMoving Transformations for Function Verification
, 1999
"... Several induction theorem provers have been developed which support mechanized verification of functional programs. Unfortunately, a major problem is that they often fail in verifying tail recursive functions (which correspond to imperative programs). However, in practice imperative programs are ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Several induction theorem provers have been developed which support mechanized verification of functional programs. Unfortunately, a major problem is that they often fail in verifying tail recursive functions (which correspond to imperative programs). However, in practice imperative programs are used almost exclusively. We present an automatic transformation to tackle this problem. It transforms functions which are hard to verify into functions whose correctness can be shown by the existing provers. In contrast to classical program transformations, the aim of our technique is not to increase efficiency, but to increase veriability. Therefore, this paper introduces a novel application area for program transformations and it shows that such techniques can in fact solve some of the most urgent current challenge problems in automated verification and induction theorem proving.