Results 11  20
of
5,608
Ant algorithms for discrete optimization
 ARTIFICIAL LIFE
, 1999
"... This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant coloniesâ€™ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic ..."
Abstract

Cited by 314 (42 self)
 Add to MetaCart
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant coloniesâ€™ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic biological findings on real ants are reviewed and their artificial counterparts as well as the ACO metaheuristic are defined. In the second part of the article a number of applications of ACO algorithms to combinatorial optimization and routing in communications networks are described. We conclude with a discussion of related work and of some of the most important aspects of the ACO metaheuristic.
Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
, 1999
"... Many realworld problems involve two types of problem difficulty: i) multiple, conflicting objectives and ii) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Paretooptimal. In the a ..."
Abstract

Cited by 300 (11 self)
 Add to MetaCart
Many realworld problems involve two types of problem difficulty: i) multiple, conflicting objectives and ii) a highly complex search space. On the one hand, instead of a single optimal solution competing goals give rise to a set of compromise solutions, generally denoted as Paretooptimal. In the absence of preference information, none of the corresponding tradeoffs can be said to be better than the others. On the other hand, the search space can be too large and too complex to be solved by exact methods. Thus, efficient optimization strategies are required that are able to deal with both difficulties. Evolutionary algorithms possess several characteristics that are desirable for this kind of problem and make them preferable to classical optimization methods. In fact, various evolutionary approaches to multiobjective optimization have been proposed since 1985, capable of searching for multiple Paretooptimal solutions concurrently in a single simulation run. However, in spite of this...
PopulationBased Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
, 1994
"... Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within th ..."
Abstract

Cited by 297 (11 self)
 Add to MetaCart
Genetic algorithms (GAs) are biologically motivated adaptive systems which have been used, with varying degrees of success, for function optimization. In this study, an abstraction of the basic genetic algorithm, the Equilibrium Genetic Algorithm (EGA), and the GA in turn, are reconsidered within the framework of competitive learning. This new perspective reveals a number of different possibilities for performance improvements. This paper explores populationbased incremental learning (PBIL), a method of combining the mechanisms of a generational genetic algorithm with simple competitive learning. The combination of these two methods reveals a tool which is far simpler than a GA, and which outperforms a GA on large set of optimization problems in terms of both speed and accuracy. This paper presents an empirical analysis of where the proposed technique will outperform genetic algorithms, and describes a class of problems in which a genetic algorithm may be able to perform better. Extensions to this algorithm are discussed and analyzed. PBIL and extensions are compared with a standard GA on twelve problems, including standard numerical optimization functions, traditional GA test suite problems, and NPComplete problems.
Evolving Virtual Creatures
 in SIGGRAPH 94 Conference Proceedings, ser. Annual Conference Series
, 1994
"... This paper describes a novel system for creating virtual creatures that move and behave in simulated threedimensional physical worlds. The morphologies of creatures and the neural systems for controlling their muscle forces are both generated automatically using genetic algorithms. Different fitnes ..."
Abstract

Cited by 296 (1 self)
 Add to MetaCart
This paper describes a novel system for creating virtual creatures that move and behave in simulated threedimensional physical worlds. The morphologies of creatures and the neural systems for controlling their muscle forces are both generated automatically using genetic algorithms. Different fitness evaluation functions are used to direct simulated evolutions towards specific behaviors such as swimming, walking, jumping, and following. A genetic language is presented that uses nodes and connections as its primitive elements to represent directed graphs, which are used to describe both the morphology and the neural circuitry of these creatures. This genetic language defines a hyperspace containing an indefinite number of possible creatures with behaviors, and when it is searched using optimization techniques, a variety of successful and interesting locomotion strategies emerge, some of which would be difficult to invent or build by design. 1
Multiobjective Evolutionary Algorithms: Analyzing the StateoftheArt
, 2000
"... Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, ..."
Abstract

Cited by 283 (7 self)
 Add to MetaCart
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of c...
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
 In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence
, 1994
"... Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic a ..."
Abstract

Cited by 277 (5 self)
 Add to MetaCart
Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic algorithm (GA), however, is readily modified to deal with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. We introduce the Niched Pareto GA as an algorithm for finding the Pareto optimal set. We demonstrate its ability to find and maintain a diverse "Pareto optimal population" on two artificial problems and an open problem in hydrosystems.
Differential Evolution  A simple and efficient adaptive scheme for global optimization over continuous spaces
, 1995
"... A new heuristic approach for minimizing possibly nonlinear and non differentiable continuous space functions is presented. By means of an extensive testbed, which includes the De Jong functions, it will be demonstrated that the new method converges faster and with more certainty than Adaptive Simula ..."
Abstract

Cited by 274 (4 self)
 Add to MetaCart
A new heuristic approach for minimizing possibly nonlinear and non differentiable continuous space functions is presented. By means of an extensive testbed, which includes the De Jong functions, it will be demonstrated that the new method converges faster and with more certainty than Adaptive Simulated Annealing as well as the Annealed Nelder&Mead approach, both of which have a reputation for being very powerful. The new method requires few control variables, is robust, easy to use and lends itself very well to parallel computation. ________________________________________ 1) International Computer Science Institute, 1947 Center Street, Berkeley, CA 947041198, Suite 600, Fax: 5106437684. Email: storn@icsi.berkeley.edu. On leave from Siemens AG, ZFE T SN 2, OttoHahn Ring 6, D81739 Muenchen, Germany. Fax: 0114963644577, Email: rainer.storn@zfe.siemens.de. 2) 836 Owl Circle, Vacaville, CA 95687, kprice@solano.community.net. Introduction Problems which involve global optimiz...
SPRINT: A scalable parallel classifier for data mining
, 1996
"... Classification is an important data mining problem. Although classification is a wellstudied problem, most of the current classification algorithms require that all or a portion of the the entire dataset remain permanently in memory. This limits their suitability for mining over large databases. ..."
Abstract

Cited by 250 (7 self)
 Add to MetaCart
Classification is an important data mining problem. Although classification is a wellstudied problem, most of the current classification algorithms require that all or a portion of the the entire dataset remain permanently in memory. This limits their suitability for mining over large databases. We present a new decisiontreebased classification algorithm, called SPRINT that removes all of the memory restrictions, and is fast and scalable. The algorithm has also been designed to be easily parallelized, allowing many processors to work together to build a single consistent model. This parallelization, also presented here, exhibits excellent scalability as well. The combination of these characteristics makes the proposed algorithm an ideal tool for data mining. 1
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Artificial Evolution for Computer Graphics
 Computer Graphics
, 1991
"... This paper describes how evolutionary techniques of variation and selection can be used to create complex simulated structures, textures, and motions for use in computer graphics and animation. Interactive selection, based on visual perception of procedurally generated results, allows the user to di ..."
Abstract

Cited by 238 (2 self)
 Add to MetaCart
This paper describes how evolutionary techniques of variation and selection can be used to create complex simulated structures, textures, and motions for use in computer graphics and animation. Interactive selection, based on visual perception of procedurally generated results, allows the user to direct simulated evolutions in preferred directions. Several examples using these methods have been implemented and are described. 3D plant structures are grown using fixed sets of genetic parameters. Images, solid textures, and animations are created using mutating symbolic lisp expressions. Genotjps consisting of symbolic expressions are presented as an attempt to surpass the limitations of fixedlength genotypes with predefine expression rules. his proposed that artificial evolution has potential as a powerful tool for achieving flexible complexity with a minimum of user input and knowledge of details. 2