Results 1  10
of
298
A new approach to the maximum flow problem
 Journal of the ACM
, 1988
"... Abstract. All previously known efftcient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on ..."
Abstract

Cited by 512 (31 self)
 Add to MetaCart
Abstract. All previously known efftcient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow in the original network and pushes local flow excess toward the sink along what are estimated to be shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as any other known method on dense. graphs, achieving an O(n)) time bound on an nvertex graph. By incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm running in O(nm log(n’/m)) time on an nvertex, medge graph. This is as fast as any known method for any graph density and faster on graphs of moderate density. The algorithm also admits efticient distributed and parallel implementations. A parallel implementation running in O(n’log n) time using n processors and O(m) space is obtained. This time bound matches that of the ShiloachVishkin algorithm, which also uses n processors but requires O(n’) space.
Principles and methods of Testing Finite State Machines a survey. The
 Proceedings of IEEE
, 1996
"... With advanced computer technology, systems are getting larger to fulfill more complicated tasks, however, they are also becoming less reliable. Consequently, testing is an indispensable part of system design and implementation; yet it has proved to be a formidable task for complex systems. This moti ..."
Abstract

Cited by 244 (13 self)
 Add to MetaCart
With advanced computer technology, systems are getting larger to fulfill more complicated tasks, however, they are also becoming less reliable. Consequently, testing is an indispensable part of system design and implementation; yet it has proved to be a formidable task for complex systems. This motivates the study of testing finite state machines to ensure the correct functioning of systems and to discover aspects of their behavior. A finite state machine contains a finite number of states and produces outputs on state transitions after receiving inputs. Finite state machines are widely used to model systems in diverse areas, including sequential circuits, certain types of programs, and, more recently, communication protocols. In a testing problem we have a machine about which we lack some information; we would like to deduce this information by providing a sequence of inputs to the machine and observing the outputs produced. Because of its practical importance and theoretical interest, the problem of testing finite state machines has been studied in different areas and at various times. The earliest published literature on this topic dates back to the 50’s. Activities in the 60’s and early 70’s were motivated mainly by automata theory and sequential circuit testing. The area seemed to have mostly died down until a few years ago when the testing problem was resurrected and is now being studied anew due to its applications to conformance testing of communication protocols. While some old problems which had been open for decades were resolved recently, new concepts and more intriguing problems from new applications emerge. We review the fundamental problems in testing finite state machines and techniques for solving these problems, tracing progress in the area from its inception to the present and the state of the art. In addition, we discuss extensions of finite state machines and some other topics related to testing. 21.
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
On implementing the pushrelabel method for the maximum flow problem
, 1994
"... We study efficient implementations of the pushrelabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementation. We also exhibit a family of p ..."
Abstract

Cited by 151 (10 self)
 Add to MetaCart
We study efficient implementations of the pushrelabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementation. We also exhibit a family of problems for which all known methods seem to have almost quadratic time growth rate.
Edmonds polytopes and a hierarchy of combinatorial problems
, 2006
"... Let S be a set of linear inequalities that determine a bounded polyhedron P. The closure of S is the smallest set of inequalities that contains S and is closed under two operations: (i) taking linear combinations of inequalities, (ii) replacing an inequality Σaj xj ≤ a0, where a1,a2,...,an are integ ..."
Abstract

Cited by 146 (0 self)
 Add to MetaCart
Let S be a set of linear inequalities that determine a bounded polyhedron P. The closure of S is the smallest set of inequalities that contains S and is closed under two operations: (i) taking linear combinations of inequalities, (ii) replacing an inequality Σaj xj ≤ a0, where a1,a2,...,an are integers, by the inequality Σaj xj ≤ a with a ≥[a0]. Obviously, if integers x1,x2,...,xn satisfy all the inequalities in S, then they satisfy also all inequalities in the closure of S. Conversely, let Σcj xj ≤ c0 hold for all choices of integers x1,x2,...,xn, that satisfy all the inequalities in S. Then we prove that Σcj xj ≤ c0 belongs to the closure of S. To each integer linear programming problem, we assign a nonnegative integer, called its rank. (The rank is the minimum number of iterations of the operation (ii) that are required in order to eliminate the integrality constraint.) We prove that there is no upper bound on the rank of problems arising from the search for largest independent sets in graphs.
Approximation Algorithms for Disjoint Paths Problems
, 1996
"... The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for w ..."
Abstract

Cited by 140 (0 self)
 Add to MetaCart
The construction of disjoint paths in a network is a basic issue in combinatorial optimization: given a network, and specified pairs of nodes in it, we are interested in finding disjoint paths between as many of these pairs as possible. This leads to a variety of classical NPcomplete problems for which very little is known from the point of view of approximation algorithms. It has recently been brought into focus in work on problems such as VLSI layout and routing in highspeed networks; in these settings, the current lack of understanding of the disjoint paths problem is often an obstacle to the design of practical heuristics.
Faster scaling algorithms for network problems
 SIAM J. COMPUT
, 1989
"... This paper presents algorithms for the assignment problem, the transportation problem, and the minimumcost flow problem of operations research. The algorithms find a minimumcost solution, yet run in time close to the bestknown bounds for the corresponding problems without costs. For example, the ..."
Abstract

Cited by 126 (4 self)
 Add to MetaCart
This paper presents algorithms for the assignment problem, the transportation problem, and the minimumcost flow problem of operations research. The algorithms find a minimumcost solution, yet run in time close to the bestknown bounds for the corresponding problems without costs. For example, the assignment problem (equivalently, minimumcost matching in a bipartite graph) can be solved in O(v/’rn log(nN)) time, where n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate optimum solution is found, rather than an exact optimum.
An Incremental Algorithm for a Generalization of the ShortestPath Problem
, 1992
"... The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsume ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
The grammar problem, a generalization of the singlesource shortestpath problem introduced by Knuth, is to compute the minimumcost derivation of a terminal string from each nonterminal of a given contextfree grammar, with the cost of a derivation being suitably defined. This problem also subsumes the problem of finding optimal hyperpaths in directed hypergraphs (under varying optimization criteria) that has received attention recently. In this paper we present an incremental algorithm for a version of the grammar problem. As a special case of this algorithm we obtain an efficient incremental algorithm for the singlesource shortestpath problem with positive edge lengths. The aspect of our work that distinguishes it from other work on the dynamic shortestpath problem is its ability to handle "multiple heterogeneous modifications": between updates, the input graph is allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and edgelength changes.
A FASTER STRONGLY POLYNOMIAL MINIMUM COST FLOW ALGORITHM
, 1991
"... In this paper, we present a new strongly polynomial time algorithm for the minimum cost flow problem, based on a refinement of the EdmondsKarp scaling technique. Our algorithm solves the uncapacitated minimum cost flow problem as a sequence of O(n log n) shortest path problems on networks with n no ..."
Abstract

Cited by 116 (10 self)
 Add to MetaCart
In this paper, we present a new strongly polynomial time algorithm for the minimum cost flow problem, based on a refinement of the EdmondsKarp scaling technique. Our algorithm solves the uncapacitated minimum cost flow problem as a sequence of O(n log n) shortest path problems on networks with n nodes and m arcs and runs in O(n log n (m + n log n)) time. Using a standard transformation, thjis approach yields an O(m log n (m + n log n)) algorithm for the capacitated minimum cost flow problem. This algorithm improves the best previous strongly polynomial time algorithm, due to Z. Galil and E. Tardos, by a factor of n 2 /m. Our algorithm for the capacitated minimum cost flow problem is even more efficient if the number of arcs with finite upper bounds, say n', is much less than m. In this case, the running time of the algorithm is O((m ' + n)log n(m + n log n)).