Results 1  10
of
30
On Augmented Lagrangian methods with general lowerlevel constraints
, 2005
"... Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. In ..."
Abstract

Cited by 59 (6 self)
 Add to MetaCart
Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. Inexact resolution of the lowerlevel constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of an exhaustive comparison against Lancelot. All the problems of the Cute collection are used in this comparison. Moreover, the resolution of location problems in which many constraints of the lowerlevel set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 10 6 variables and 14 × 10 6 constraints are solved in this way, using moderate computer time.
Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification
"... ..."
A new active set algorithm for box constrained Optimization
 SIAM Journal on Optimization
, 2006
"... Abstract. An active set algorithm (ASA) for box constrained optimization is developed. The algorithm consists of a nonmonotone gradient projection step, an unconstrained optimization step, and a set of rules for branching between the two steps. Global convergence to a stationary point is established ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
Abstract. An active set algorithm (ASA) for box constrained optimization is developed. The algorithm consists of a nonmonotone gradient projection step, an unconstrained optimization step, and a set of rules for branching between the two steps. Global convergence to a stationary point is established. For a nondegenerate stationary point, the algorithm eventually reduces to unconstrained optimization without restarts. Similarly, for a degenerate stationary point, where the strong secondorder sufficient optimality condition holds, the algorithm eventually reduces to unconstrained optimization without restarts. A specific implementation of the ASA is given which exploits the recently developed cyclic Barzilai–Borwein (CBB) algorithm for the gradient projection step and the recently developed conjugate gradient algorithm CG DESCENT for unconstrained optimization. Numerical experiments are presented using box constrained problems in the CUTEr and MINPACK2 test problem libraries. Key words. nonmonotone gradient projection, box constrained optimization, active set algorithm,
Global minimization using an Augmented Lagrangian method with variable lowerlevel constraints
, 2007
"... A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global c ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an εglobal minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented.
Optimizing the Packing of Cylinders into a Rectangular Container: A Nonlinear Approach
, 2003
"... The container loading problem has important industrial and commercial applications. An increase in the number of items in a container leads to a decrease in cost. For this reason the related optimization problem is of economic importance. In this work, a procedure based on a nonlinear decision pr ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
The container loading problem has important industrial and commercial applications. An increase in the number of items in a container leads to a decrease in cost. For this reason the related optimization problem is of economic importance. In this work, a procedure based on a nonlinear decision problem to solve the cylinder packing problem with identical diameters is presented. This formulation is based on the fact that the centers of the cylinders have to be inside the rectangular box de ned by the base of the container (a radius far from the frontier) and far from each other at least one diameter. With this basic premise the procedure tries to nd the maximum number of cylinder centers that satisfy these restrictions. The continuous nature of the problem is one of the reasons that motivated this study. A comparative study with other methods of the literature is presented and better results are achieved.
On the Boundedness of Penalty Parameters in an Augmented Lagrangian Method with Constrained Subproblems
, 2011
"... Augmented Lagrangian methods are effective tools for solving largescale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When t ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Augmented Lagrangian methods are effective tools for solving largescale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large the subproblem is difficult, therefore the effectiveness of this approach is associated with boundedness of penalty parameters. In this paper it is proved that, under more natural assumptions than the ones up to now employed, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Low OrderValue Optimization and Applications
, 2005
"... Given r real functions F1(x),..., Fr(x) and an integer p between 1 and r, the Low OrderValue Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y1,..., yr) is a vector of data and T (x, ti) is the predicted value of the observation i with ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
Given r real functions F1(x),..., Fr(x) and an integer p between 1 and r, the Low OrderValue Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y1,..., yr) is a vector of data and T (x, ti) is the predicted value of the observation i with the parameters x ∈ IR n, it is natural to define Fi(x) = (T (x, ti) − yi) 2 (the quadratic error at observation i under the parameters x). When p = r this LOVO problem coincides with the classical nonlinear leastsquares problem. However, the interesting situation is when p is smaller than r. In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models. When p ≪ r the LOVO problem may be used to find hidden structures in data sets. One of the best succeeded applications include the Protein Alignment problem. Fully documented algorithms for this application are available at www.ime.unicamp.br/∼martinez/lovoalign. In this paper optimality conditions are discussed, algorithms for solving the LOVO problem are introduced and convergence theorems are proved. Finally, numerical experiments are presented.
Secondorder negativecurvature methods for boxconstrained and general constrained optimization
, 2009
"... A Nonlinear Programming algorithm that converges to secondorder stationary points is introduced in this paper. The main tool is a secondorder negativecurvature method for boxconstrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
A Nonlinear Programming algorithm that converges to secondorder stationary points is introduced in this paper. The main tool is a secondorder negativecurvature method for boxconstrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (PowellHestenesRockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to secondorder stationary points in situations in which firstorder methods fail are exhibited.
Improving ultimate convergence of an Augmented Lagrangian method
, 2007
"... Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptoticall ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Optimization methods that employ the classical PowellHestenesRockafellar Augmented Lagrangian are useful tools for solving Nonlinear Programming problems. Their reputation decreased in the last ten years due to the comparative success of InteriorPoint Newtonian algorithms, which are asymptotically faster. In the present research a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its “pure” counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the Interior Point method is replaced by the Newtonian resolution of a KKT system identified by the Augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:
Partial Spectral Projected Gradient Method with ActiveSet Strategy for Linearly Constrained Optimization
, 2009
"... A method for linearly constrained optimization which modifies and generalizes recent boxconstraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted t ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
A method for linearly constrained optimization which modifies and generalizes recent boxconstraint optimization algorithms is introduced. The new algorithm is based on a relaxed form of Spectral Projected Gradient iterations. Intercalated with these projected steps, internal iterations restricted to faces of the polytope are performed, which enhance the efficiency of the algorithms. Convergence proofs are given and numerical experiments are included and commented. Software supporting this paper is available through the Tango