Results 1  10
of
43
Syntax and Semantics of Dependent Types
 Semantics and Logics of Computation
, 1997
"... ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe is written Set instead of U . The Eloperator is omitted. For example the \Pitype is described by the following constant and equality declarations (understood in every valid context): ` \Pi : (oe: Set; : (oe)Set)Set ` App : (oe: Set; : (oe)Set; m: \Pi(oe; ); n: oe) (m) ` : (oe: Set; : (oe)Set; m: (x: oe) (x))\Pi(oe; ) oe: Set; : (oe)Set; m: (x: oe) (x); n: oe ` App(oe; ; (oe; ; m); n) = m(n) Notice, how terms with free variables are represented as framework abstractions (in the type of ) and how substitution is represented as framework application (in the type of App and in the equation). In this way the burden of dealing correctly with variables, substitution, and binding is s...
On the Interpretation of Type Theory in Locally Cartesian Closed Categories
 Proceedings of Computer Science Logic, Lecture Notes in Computer Science
, 1994
"... . We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of exten ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
. We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to define a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory. 1 Introduction and Motivation Interpreting dependent type theory in locally cartesian closed categories (lcccs) and more generally in (non split) fibrational models like the ones described in [7] is an intricate problem. The reason is that in order to interpret terms associated with substitution like pairing for \Sigma types or application for \Pitypes one needs a semantical equivalent to syntactic substitution. To clarify the issue let us have a look at the "naive" approach described in Seely's seminal paper [14] which contains a subtle inaccuracy. Assume some dependently typed calculus like the one defined in [10] and an lccc C (a category ...
Wellfounded Trees in Categories
, 1999
"... this paper, we give an abstract 2 categorical characterization of Wtypes. We calculate these Wtypes explicitly in some categories of presheaves and sheaves on a site, and in the gluing category or Freyd cover. (We also have an explicit description in the case of Hyland's realizability topos, whic ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
this paper, we give an abstract 2 categorical characterization of Wtypes. We calculate these Wtypes explicitly in some categories of presheaves and sheaves on a site, and in the gluing category or Freyd cover. (We also have an explicit description in the case of Hyland's realizability topos, which will be presented in [17].) These explicit calculations can be formalized in a weak predicative metatheory, and lead to the result that if E is any suitably filtered pretopos with dependent products and Wtypes, then so is the category of internal sheaves on a site in E (Remark 5.9). Our paper is organized as follows. In Section 2 we review some standard definitions concerning pretoposes and dependent products. In Section 3 we present the categorical definition of the Wconstruction, and in Section 4 we prove some of its basic functoriality properties; e.g., that it turns coequalizers into equalizers. In Section 5, a construction is presented which to each map between (pre)sheaves of sets associates a sheaf of wellfounded trees, and it is proved that this is in fact the Wtype in the category (pre)sheaves of sets (Theorem 5.6). In Section 6, we discuss the Wconstruction for the Freyd cover. Finally, in Section 7 it is shown how these categorical constructions are not only analogous to but explicitly related to MartinLof type theory. 2 Pretoposes and dependent products
Internal Type Theory
 Lecture Notes in Computer Science
, 1996
"... . We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with f ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
. We introduce categories with families as a new notion of model for a basic framework of dependent types. This notion is close to ordinary syntax and yet has a clean categorical description. We also present categories with families as a generalized algebraic theory. Then we define categories with families formally in MartinLof's intensional intuitionistic type theory. Finally, we discuss the coherence problem for these internal categories with families. 1 Introduction In a previous paper [8] I introduced a general notion of simultaneous inductiverecursive definition in intuitionistic type theory. This notion subsumes various reflection principles and seems to pave the way for a natural development of what could be called "internal type theory", that is, the construction of models of (fragments of) type theory in type theory, and more generally, the formalization of the metatheory of type theory in type theory. The present paper is a first investigation of such an internal type theor...
Inductionrecursion and initial algebras
 Annals of Pure and Applied Logic
, 2003
"... 1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition of a universe `a la T ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
1 Introduction Inductionrecursion is a powerful definition method in intuitionistic type theory in the sense of Scott ("Constructive Validity") [31] and MartinL"of [17, 18, 19]. The first occurrence of formal inductionrecursion is MartinL"of's definition of a universe `a la Tarski [19], which consists of a set U
A dialecticalike model of linear logic
 In Proc. Conf. on Category Theory and Computer Science, LNCS 389
, 1989
"... The aim of this work is to define the categories GC, describe their categorical structure and show they are a model of Linear Logic. The second goal is to relate those categories to the Dialectica categories DC, cf.[DCJ, using different functors for the exponential “of course”. It is hoped that this ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
The aim of this work is to define the categories GC, describe their categorical structure and show they are a model of Linear Logic. The second goal is to relate those categories to the Dialectica categories DC, cf.[DCJ, using different functors for the exponential “of course”. It is hoped that this categorical model of Linear Logic should help us to get a better understanding of the logic, which is, perhaps, the first nonintuitionistic constructive logic. This work is divided in two parts, each one with 3 sections. The first section shows that GC is a monoidal closed category and describes bifunctors for tensor “0”, internal horn “[—, —]“, par “u”, cartesian products “& “ and coproducts “s”. The second section defines linear negation as a contravariant functor obtained evaluating the internal horn bifunctor at a “dualising object”. The third section makes explicit the connections with Linear Logic, while the fourth introduces the comonads used to model the connective “of course”. Section 5 discusses some properties of these cornonads and finally section 6 makes the logical connections once more. This work grew out of suggestions of J.Y. Girard at the AMSConference on Categories, Logic and Computer Science in Boulder 1987, where I presented my earlier work on the Dialectica categories, hence the title. Still on the lines of given credit where it is due, I would like to say that Martin Hyland, under whose supervision this work was written, has been a continuous source of ideas and inspiration. Many heartfelt thanks to him. 1. The main definitions We start with a finitely complete category C. Then to describe GC say that its objects are relations on objects of C, that is monics A ~ U x X, which we usually write as (U ~ X). Given two such objects, (U ~ X) and (V L Y), which we call simply A and B, a morphism from A to B consists of a pair of maps in C, f: U — * V and F 4 Y —+ X, such that a pullback condition is satisfied, namely that where (~~)_1 represents puilbacks. (U x F) 1 (o~) ~ (f x Y) 1 (/3), (1) 342 Using diagrams, we say (f,F) is a morphism in GC if there is a (unique) map in ~, k: A ’ —~B ’ making the triangle commute: a~I Ia
Wellfounded Trees and Dependent Polynomial Functors
 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class ..."
Abstract

Cited by 25 (4 self)
 Add to MetaCart
We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed categories.
Deliverables: A Categorical Approach to Program Development in Type Theory
, 1992
"... This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack's ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack's versatile LEGO implementation, which I use extensively to develop the mathematical constructions studied here. I systematically investigate Burstall's notion of deliverable, that is, a program paired with a proof of correctness. This approach separates the concerns of programming and logic, since I want a simple program extraction mechanism. The \Sigmatypes of the calculus enable us to achieve this. There are many similarities with the subset interpretation of MartinLof type theory. I show that deliverables have a rich categorical structure, so that correctness proofs may be decomposed in a principled way. The categorical combinators which I define in the system package up much logical bo...
A CategoryTheoretic Account of Program Modules
 Mathematical Structures in Computer Science
, 1994
"... The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as inde ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as indexed categories" and illustrates how ML can be extended to support higher order modules, by developing a categorytheoretic semantics for a calculus of modules with dependent types. The paper outlines also a methodology, which may lead to a modular approach in the study of programming languages. Introduction The addition of module facilities to programming languages is motivated by the need to provide a better environment for the development and maintenance of large programs. Nowadays many programming languages include such facilities. Throughout the paper Standard ML (see [Mac85, HMM86, MTH90]) is taken as representative for these languages. The implementation of module facilities has been ...