Results 1  10
of
115
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 149 (53 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Structural Induction and Coinduction in a Fibrational Setting
 Information and Computation
, 1997
"... . We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for in ..."
Abstract

Cited by 67 (14 self)
 Add to MetaCart
. We present a categorical logic formulation of induction and coinduction principles for reasoning about inductively and coinductively defined types. Our main results provide sufficient criteria for the validity of such principles: in the presence of comprehension, the induction principle for initial algebras is admissible, and dually, in the presence of quotient types, the coinduction principle for terminal coalgebras is admissible. After giving an alternative formulation of induction in terms of binary relations, we combine both principles and obtain a mixed induction/coinduction principle which allows us to reason about minimal solutions X = oe(X) where X may occur both positively and negatively in the type constructor oe. We further strengthen these logical principles to deal with contexts and prove that such strengthening is valid when the (abstract) logic we consider is contextually/functionally complete. All the main results follow from a basic result about adjunc...
Natural Deduction and Coherence for Weakly Distributive Categories
 Journal of Pure and Applied Algebra
, 1991
"... This paper examines coherence for certain monoidal categories using techniques coming from the proof theory of linear logic, in particular making heavy use of the graphical techniques of proof nets. We define a two sided notion of proof net, suitable for categories like weakly distributive categorie ..."
Abstract

Cited by 65 (24 self)
 Add to MetaCart
This paper examines coherence for certain monoidal categories using techniques coming from the proof theory of linear logic, in particular making heavy use of the graphical techniques of proof nets. We define a two sided notion of proof net, suitable for categories like weakly distributive categories which have the twotensor structure (times/par) of linear logic, but lack a negation operator. Representing morphisms in weakly distributive categories as such nets, we derive a coherence theorem for such categories. As part of this process, we develop a theory of expansionreduction systems with equalities and a term calculus for proof nets, each of which is of independent interest. In the symmetric case the expansion reduction system on the term calculus yields a decision procedure for the equality of maps for free weakly distributive categories. The main results of this paper are these. First we have proved coherence for the full theory of weakly distributive categories, extending simi...
The Second Calculus of Binary Relations
 In Proceedings of MFCS'93
, 1993
"... We view the Chu space interpretation of linear logic as an alternative interpretation of the language of the Peirce calculus of binary relations. Chu spaces amount to Kvalued binary relations, which for K = 2 n we show generalize nary relational structures. We also exhibit a fourstage unique fa ..."
Abstract

Cited by 54 (18 self)
 Add to MetaCart
We view the Chu space interpretation of linear logic as an alternative interpretation of the language of the Peirce calculus of binary relations. Chu spaces amount to Kvalued binary relations, which for K = 2 n we show generalize nary relational structures. We also exhibit a fourstage unique factorization system for Chu transforms that illuminates their operation. 1 Introduction In 1860 A. De Morgan [DM60] introduced a calculus of binary relations equivalent in expressive power to one whose formulas, written in today's notation, are inequalities a b between terms a; b; . . . built up from variables with the operations of composition a; b, converse a, and complement a \Gamma . In 1870 C.S. Peirce [Pei33] extended De Morgan's calculus with Boolean connectives a + b and ab, Boolean constants 0 and 1, and an identity 1 0 for composition. In 1895 E. Schroder devoted a book [Sch95] to the calculus, and further extended it with the operations of reflexive transitive closure, a ...
Restriction categories I: Categories of partial maps
 Theoretical Computer Science
, 2001
"... ..."
Linearly Distributive Functors
 J. Pure Appl. Algebra
, 1997
"... This paper introduces a notion of \linear functor" between linearly distributive categories that is general enough to account for common structure in linear logic, such as the exponentials ( ! , ? ), and the additives (product, coproduct), and yet when interpreted in the doctrine of autonomous ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
This paper introduces a notion of \linear functor" between linearly distributive categories that is general enough to account for common structure in linear logic, such as the exponentials ( ! , ? ), and the additives (product, coproduct), and yet when interpreted in the doctrine of autonomous categories, gives the familiar notion of monoidal functor. We show that there is a biadjunction between the 2{categories of linearly distributive categories and linear functors, and of  autonomous categories and monoidal functors, given by the construction of the \nucleus" of a linearly distributive category. We develop a calculus of proof nets for linear functors, and show how linearity accounts for the essential coherence structure of the exponentials and the additives. Introduction What is the \appropriate" notion of a functor between linearly (formerly \weakly") distributive categories? In [CS92] we were content to think of the functors between linearly distributive categories as being ...
Orderenriched categorical models of the classical sequent calculus
 LECTURE AT INTERNATIONAL CENTRE FOR MATHEMATICAL SCIENCES, WORKSHOP ON PROOF THEORY AND ALGORITHMS
, 2003
"... It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. Starting from a convenient formulation of the wellknown categorical semantics of linear classical sequent proofs, we give models of weakening and contra ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. Starting from a convenient formulation of the wellknown categorical semantics of linear classical sequent proofs, we give models of weakening and contraction that do not collapse. Cutreduction is interpreted by a partial order between morphisms. Our models make no commitment to any translation of classical logic into intuitionistic logic and distinguish nondeterministic choices of cutelimination. We show soundness and completeness via initial models built from proof nets, and describe models built from sets and relations.
From proof nets to the free * autonomous category
 Logical Methods in Computer Science, 2(4:3):1–44, 2006. Available from: http://arxiv.org/abs/cs/0605054. [McK05] Richard McKinley. Classical categories and deep inference. In Structures and Deduction 2005 (Satellite Workshop of ICALP’05
, 2005
"... Vol. 2 (4:3) 2006, pp. 1–44 www.lmcsonline.org ..."