Results 1 
3 of
3
The Structure of Complete Degrees
, 1990
"... This paper surveys investigations into how strong these commonalities are. More concretely, we are concerned with: What do NPcomplete sets look like? To what extent are the properties of particular NPcomplete sets, e.g., SAT, shared by all NPcomplete sets? If there are are structural differences ..."
Abstract

Cited by 29 (3 self)
 Add to MetaCart
This paper surveys investigations into how strong these commonalities are. More concretely, we are concerned with: What do NPcomplete sets look like? To what extent are the properties of particular NPcomplete sets, e.g., SAT, shared by all NPcomplete sets? If there are are structural differences between NPcomplete sets, what are they and what explains the differences? We make these questions, and the analogous questions for other complexity classes, more precise below. We need first to formalize NPcompleteness. There are a number of competing definitions of NPcompleteness. (See [Har78a, p. 7] for a discussion.) The most common, and the one we use, is based on the notion of mreduction, also known as polynomialtime manyone reduction and Karp reduction. A set A is mreducible to B if and only if there is a (total) polynomialtime computable function f such that for all x, x 2 A () f(x) 2 B: (1) 1
Every PolynomialTime 1Degree Collapses iff P = PSPACE
, 1996
"... A set A is mreducible (or Karpreducible) to B iff there is a polynomialtime computable function f such that, for all x, x 2 A () f(x) 2 B. Two sets are: ffl 1equivalent iff each is mreducible to the other by oneone reductions; ffl pinvertible equivalent iff each is mreducible to the othe ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
A set A is mreducible (or Karpreducible) to B iff there is a polynomialtime computable function f such that, for all x, x 2 A () f(x) 2 B. Two sets are: ffl 1equivalent iff each is mreducible to the other by oneone reductions; ffl pinvertible equivalent iff each is mreducible to the other by oneone, polynomialtime invertible reductions; and ffl pisomorphic iff there is an mreduction from one set to the other that is oneone, onto, and polynomialtime invertible. In this paper we show the following characterization. Theorem The following are equivalent: (a) P = PSPACE. (b) Every two 1equivalent sets are pisomorphic. (c) Every two pinvertible equivalent sets are pisomorphic. 2 1. Overview If A is mreducible to B, we usually interpret this to mean that A is computationally no more difficult than B, since a procedure for computing B is easily converted into a procedure for computing A of comparable complexity. In fact, this interpretation is supported by muc...
Every PolynomialTime 1Degree Collapses if and only if P = PSPACE
"... A set A is mreducible (or Karpreducible) to B if and only if there is a polynomialtime computable function f such that, for all x, x # A if and only if f(x) # B. Two sets are: . 1equivalent if and only if each is mreducible to the other by oneone reductions; . pinvertible equivalent ..."
Abstract
 Add to MetaCart
A set A is mreducible (or Karpreducible) to B if and only if there is a polynomialtime computable function f such that, for all x, x # A if and only if f(x) # B. Two sets are: . 1equivalent if and only if each is mreducible to the other by oneone reductions; . pinvertible equivalent if and only if each is mreducible to the other by oneone, polynomialtime invertible reductions; and . pisomorphic if and only if there is an mreduction from one set to the other that is oneone, onto, and polynomialtime invertible. In this paper we show the following characterization. Theorem The following are equivalent: (a) P = PSPACE. (b) Every two 1equivalent sets are pisomorphic. (c) Every two pinvertible equivalent sets are pisomorphic. 2 1.