Results 1 - 10
of
114
Interactive Graph Cut Based Segmentation With Shape Priors
- IN CVPR, PAGES I: 755–762
, 2005
"... ... alternative to pure automatic segmentation in many applications. While automatic segmentation can be very challenging, a small amount of user input can often resolve ambiguous decisions on the part of the algorithm. In this work, we devise a graph cut algorithm for interactive segmentation which ..."
Abstract
-
Cited by 116 (0 self)
- Add to MetaCart
... alternative to pure automatic segmentation in many applications. While automatic segmentation can be very challenging, a small amount of user input can often resolve ambiguous decisions on the part of the algorithm. In this work, we devise a graph cut algorithm for interactive segmentation which incorporates shape priors. While traditional graph cut approaches to interactive segmentation are often quite successful, they may fail in cases where there are diffuse edges, or multiple similar objects in close proximity to one another. Incorporation of shape priors within this framework mitigates these problems. Positive results on both medical and natural images are demonstrated.
Non-Rigid Structure-From-Motion: Estimating Shape and Motion with Hierarchical Priors
, 2007
"... This paper describes methods for recovering time-varying shape and motion of non-rigid 3D objects from uncalibrated 2D point tracks. For example, given a video recording of a talking person, we would like to estimate the 3D shape of the face at each instant, and learn a model of facial deformation. ..."
Abstract
-
Cited by 91 (1 self)
- Add to MetaCart
This paper describes methods for recovering time-varying shape and motion of non-rigid 3D objects from uncalibrated 2D point tracks. For example, given a video recording of a talking person, we would like to estimate the 3D shape of the face at each instant, and learn a model of facial deformation. Time-varying shape is modeled as a rigid transformation combined with a non-rigid deformation. Reconstruction is ill-posed if arbitrary deformations are allowed, and thus additional assumptions about deformations are required. We first suggest restricting shapes to lie within a lowdimensional subspace, and describe estimation algorithms. However, this restriction alone is insufficient to constrain reconstruction. To address these problems, we propose a reconstruction method using a Probabilistic Principal Components Analysis (PPCA) shape model, and an estimation algorithm that simultaneously estimates 3D shape and motion for each instant, learns the PPCA model parameters, and robustly fills-in missing data points. We then extend the model to model temporal dynamics in object shape, allowing the algorithm to robustly handle severe cases of missing data.
FAME -- A Flexible Appearance Modelling Environment
, 2003
"... Combined modelling of pixel intensities and shape has proven to be a very robust and widely applicable approach to interpret images. As such the Active Appearance Model (AAM) framework has been applied to a wide variety of problems within medical image analysis. This paper summarises AAM application ..."
Abstract
-
Cited by 83 (8 self)
- Add to MetaCart
Combined modelling of pixel intensities and shape has proven to be a very robust and widely applicable approach to interpret images. As such the Active Appearance Model (AAM) framework has been applied to a wide variety of problems within medical image analysis. This paper summarises AAM applications within medicine and describes a public domain implementation, namely the Flexible Appearance Modelling Environment (FAME). We give guidelines for the use of this research platform, and show that the optimisation techniques used renders it applicable to interactive medical applications. To increase performance and make models generalise better, we apply parallel analysis to obtain automatic and objective model truncation. Further, two different AAM training methods are compared along with a reference case study carried out on cross-sectional short-axis cardiac magnetic resonance images and face images. Source code and annotated data sets needed to reproduce the results are put in the public domain for further investigation.
Learning Non-Rigid 3D Shape from 2D Motion
, 2003
"... This paper presents an algorithm for learning the time-varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotation and translation) combined with a non-rigid deformation. Reconstruction is ill-posed if arbitrary deformations are ..."
Abstract
-
Cited by 57 (2 self)
- Add to MetaCart
(Show Context)
This paper presents an algorithm for learning the time-varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotation and translation) combined with a non-rigid deformation. Reconstruction is ill-posed if arbitrary deformations are allowed. We constrain the problem by assuming that the object shape at each time instant is drawn from a Gaussian distribution. Based on this assumption, the algorithm simultaneously estimates 3D shape and motion for each time frame, learns the parameters of the Gaussian, and robustly fills-in missing data points. We then extend the algorithm to model temporal smoothness in object shape, thus allowing it to handle severe cases of missing data.
Model-Based Segmentation of Medical Imagery by Matching Distributions
- IEEE Trans. Med. Imaging
, 2005
"... The segmentation of deformable objects from three-dimensional (3-D) images is an important and challenging problem, especially in the context of medical imagery. We present a new segmentation algorithm based on matching probability distributions of photometric variables that incorporates learned sha ..."
Abstract
-
Cited by 46 (4 self)
- Add to MetaCart
(Show Context)
The segmentation of deformable objects from three-dimensional (3-D) images is an important and challenging problem, especially in the context of medical imagery. We present a new segmentation algorithm based on matching probability distributions of photometric variables that incorporates learned shape and appearance models for the objects of interest. The main innovation over similar approaches is that there is no need to compute a pixelwise correspondence between the model and the image. This allows for a fast, principled algorithm. We present promising results on difficult imagery for 3-D computed tomography images of the male pelvis for the purpose of image-guided radiotherapy of the prostate.
An Electromechanical Model of the Heart for Image Analysis and Simulation
- IEEE Transactions in Medical Imaging
"... Abstract—This paper presents a new three-dimensional electromechanical model of the two cardiac ventricles designed both for the simulation of their electrical and mechanical activity, and for the segmentation of time series of medical images. First, we present the volumetric biomechanical models bu ..."
Abstract
-
Cited by 45 (21 self)
- Add to MetaCart
(Show Context)
Abstract—This paper presents a new three-dimensional electromechanical model of the two cardiac ventricles designed both for the simulation of their electrical and mechanical activity, and for the segmentation of time series of medical images. First, we present the volumetric biomechanical models built. Then the transmembrane potential propagation is simulated, based on FitzHugh-Nagumo reaction-diffusion equations. The myocardium contraction is modeled through a constitutive law including an electromechanical coupling. Simulation of a cardiac cycle, with boundary conditions representing blood pressure and volume constraints, leads to the correct estimation of global and local parameters of the cardiac function. This model enables the introduction of pathologies and the simulation of electrophysiology interventions. Moreover, it can be used for cardiac image analysis. A new proactive deformable model of the heart is introduced to segment the two ventricles in time series of cardiac images. Preliminary results indicate that this proactive model, which integrates a priori knowledge on the cardiac anatomy and on its dynamical behavior, can improve the accuracy and robustness of the extraction of functional parameters from cardiac images even in the presence of noisy or sparse data. Such a model also allows the simulation of cardiovascular pathologies in order to test therapy strategies and to plan interventions. Index Terms—Cardiac image analysis, cardiac modeling, deformable model, electromechanical coupling, simulation of cardiac pathologies. I.
A Model of Facial Behaviour
- In IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, May 17
, 2002
"... We consider the problem of learning how a person’s face behaves in a long video sequence, with the aim of synthesising convincing sequences demonstrating the same behaviours. We describe a novel approach to segment a sequence into short sections, each representing a distinct action (or a part of an ..."
Abstract
-
Cited by 29 (1 self)
- Add to MetaCart
(Show Context)
We consider the problem of learning how a person’s face behaves in a long video sequence, with the aim of synthesising convincing sequences demonstrating the same behaviours. We describe a novel approach to segment a sequence into short sections, each representing a distinct action (or a part of an action). These sections are grouped and a model of the variability of the action learnt. A variable length Markov model is trained on the sequence of such actions to learn the temporal relationships. The result is a system that can generate realistic sequences of an individual face.
Object oriented data analysis: Sets of trees
- The Annals of Statistics
"... Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in m ..."
Abstract
-
Cited by 29 (8 self)
- Add to MetaCart
Object Oriented Data Analysis is the statistical analysis of populations of complex objects. In the special case of Functional Data Analysis, these data objects are curves, where standard Euclidean approaches, such as principal components analysis, have been very successful. Recent developments in medical image analysis motivate the statistical analysis of populations of more complex data objects which are elements of mildly non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, or of strongly non-Euclidean spaces, such as spaces of tree-structured data objects. These new contexts for Object Oriented Data Analysis create several potentially large new interfaces between mathematics and statistics. This point is illustrated through the careful development of a novel mathematical framework for statistical analysis of populations of tree structured objects. 1. Introduction Object Oriented Data Analysis (OODA) is the statistical analysis of data sets of complex objects. The area is understood through consideration
Video assisted speech source separation
- In Proceedings of the International Conference of Acoustic, Speech and Signal Processing (ICASSP2005
, 2005
"... In this paper we investigate the problem of integrating the complementary audio and visual modalities for speech separation. Rather than using independence criteria suggested in most blind source separation (BSS) systems, we use the visual feature from a video signal as additional information to opt ..."
Abstract
-
Cited by 27 (5 self)
- Add to MetaCart
(Show Context)
In this paper we investigate the problem of integrating the complementary audio and visual modalities for speech separation. Rather than using independence criteria suggested in most blind source separation (BSS) systems, we use the visual feature from a video signal as additional information to optimize the unmixing matrix. We achieve this by using a statistical model characterizing the nonlinear coherence between audio and visual features as a separation criterion for both instantaneous and convolutive mixtures. We acquire the model by applying the Bayesian framework to the fused feature observations based on a training corporus. We point out several key exisiting challenges to the success of the system. Experimental results verify the proposed approach, whichoutperformstheaudioonlyseparationsystemina noisy environment, and also provides a solution to the permutation problem. 1.