Results

**1 - 4**of**4**### Russell’s Absolutism vs.(?)

"... Along with Frege, Russell maintained an absolutist stance regarding the subject matter of mathematics, revealed rather than imposed, or proposed, by logical analysis. The Fregean definition of cardinal number, for example, is viewed as (essentially) correct, not merely adequate for mathematics. And ..."

Abstract
- Add to MetaCart

Along with Frege, Russell maintained an absolutist stance regarding the subject matter of mathematics, revealed rather than imposed, or proposed, by logical analysis. The Fregean definition of cardinal number, for example, is viewed as (essentially) correct, not merely adequate for mathematics. And Dedekind’s “structuralist” views come in for criticism in the Principles. But, on reflection, Russell also flirted with views very close to a (different) version of structuralism. Main varieties of modern structuralism and their challenges are reviewed, taking account of Russell’s insights. Problems of absolutism plague some versions, and, interestingly, Russell’s critique of Dedekind can be extended to one of them, ante rem structuralism. This leaves modal-structuralism and a category theoretic approach as remaining non-absolutist

### 1 Reflections on a categorical foundations of mathematics

"... Summary. We examine Gödel’s completeness and incompleteness theorems for higher order arithmetic from a categorical point of view. The former says that a proposition is provable if and only if it is true in all models, which we take to be local toposes, i.e. Lawvere’s elementary toposes in which the ..."

Abstract
- Add to MetaCart

Summary. We examine Gödel’s completeness and incompleteness theorems for higher order arithmetic from a categorical point of view. The former says that a proposition is provable if and only if it is true in all models, which we take to be local toposes, i.e. Lawvere’s elementary toposes in which the terminal object is a nontrivial indecomposable projective. The incompleteness theorem showed that, in the classical case, it is not enough to look only at those local toposes in which all the numerals are standard. Thus, for a classical mathematician, Hilbert’s formalist program is not compatible with the belief in a Platonic standard model. However, for pure intuitionistic type theory, a single model suffices, the linguistically constructed free topos, which is the initial object in the category of all elementary toposes and logical functors. Hence, for a moderate intuitionist, formalism and Platonism can be reconciled after all. The completeness theorem can be sharpened to represent any topos by continuous sections of a sheaf of local toposes. 1.1

### Gödel on Intuition and on Hilbert’s finitism

"... There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the con ..."

Abstract
- Add to MetaCart

There are some puzzles about Gödel’s published and unpublished remarks concerning finitism that have led some commentators to believe that his conception of it was unstable, that he oscillated back and forth between different accounts of it. I want to discuss these puzzles and argue that, on the contrary, Gödel’s writings represent a smooth evolution, with just one rather small double-reversal, of his view of finitism. He used the term “finit ” (in German) or “finitary ” or “finitistic ” primarily to refer to Hilbert’s conception of finitary mathematics. On two occasions (only, as far as I know), the lecture notes for his lecture at Zilsel’s [Gödel, 1938a] and the lecture notes for a lecture at Yale [Gödel, *1941], he used it in a way that he knew—in the second case, explicitly—went beyond what Hilbert meant. Early in his career, he believed that finitism (in Hilbert’s sense) is openended, in the sense that no correct formal system can be known to formalize all finitist proofs and, in particular, all possible finitist proofs of consistency of first-order number theory, P A; but starting in the Dialectica paper