Results 1 
5 of
5
Explicit substitutions
, 1996
"... The λσcalculus is a refinement of the λcalculus where substitutions are manipulated explicitly. The λσcalculus provides a setting for studying the theory of substitutions, with pleasant mathematical properties. It is also a useful bridge between the classical λcalculus and concrete implementatio ..."
Abstract

Cited by 390 (11 self)
 Add to MetaCart
The λσcalculus is a refinement of the λcalculus where substitutions are manipulated explicitly. The λσcalculus provides a setting for studying the theory of substitutions, with pleasant mathematical properties. It is also a useful bridge between the classical λcalculus and concrete implementations.
Higherorder Unification via Explicit Substitutions (Extended Abstract)
 Proceedings of LICS'95
, 1995
"... Higherorder unification is equational unification for βηconversion. But it is not firstorder equational unification, as substitution has to avoid capture. In this paper higherorder unification is reduced to firstorder equational unification in a suitable theory: the λσcal ..."
Abstract

Cited by 103 (13 self)
 Add to MetaCart
Higherorder unification is equational unification for βηconversion. But it is not firstorder equational unification, as substitution has to avoid capture. In this paper higherorder unification is reduced to firstorder equational unification in a suitable theory: the λσcalculus of explicit substitutions.
A lambdacalculus à la de Bruijn with explicit substitutions
, 1995
"... The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by tra ..."
Abstract

Cited by 78 (26 self)
 Add to MetaCart
The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by translating it into the oecalculus [ACCL91], and therefore the relation between both calculi will be made explicit. The confluence of the scalculus is obtained by the "interpretation method" ([Har89], [CHL92]). The proof of the preservation of normalisation follows the lines of an analogous result for the AEcalculus (cf. [BBLRD95]). The relation between s and AE is also studied.
Unification via Explicit Substitutions: The Case of HigherOrder Patterns
 PROCEEDINGS OF JICSLP'96
, 1998
"... In [6] we have proposed a general higherorder unification method using a theory of explicit substitutions and we have proved its completeness. In this paper, we investigate the case of higherorder patterns as introduced by Miller. We show that our general algorithm specializes in a very convenient ..."
Abstract

Cited by 56 (14 self)
 Add to MetaCart
In [6] we have proposed a general higherorder unification method using a theory of explicit substitutions and we have proved its completeness. In this paper, we investigate the case of higherorder patterns as introduced by Miller. We show that our general algorithm specializes in a very convenient way to patterns. We also sketch an efficient implementation of the abstract algorithm and its generalization to constraint simplification, which has yielded good experimental results at the core of a higherorder constraint logic programming language.
Deriving SN from PSN: a general proof technique
, 909
"... In the framework of explicit substitutions there is two termination properties: preservation of strong normalization (PSN), and strong normalization (SN). Since there are not easily proved, only one of them is usually established (and sometimes none). We propose here a connection between them which ..."
Abstract
 Add to MetaCart
In the framework of explicit substitutions there is two termination properties: preservation of strong normalization (PSN), and strong normalization (SN). Since there are not easily proved, only one of them is usually established (and sometimes none). We propose here a connection between them which helps to get SN when one already has PSN. For this purpose, we formalize a general proof technique of SN which consists in expanding substitutions into “pure ” λterms and to inherit SN of the whole calculus by SN of the “pure ” calculus and by PSN. We apply it successfully to a large set of calculi with explicit substitutions, allowing us to establish SN, or, at least, to trace back the failure of SN to that of PSN. Contents