Results 1  10
of
53
A Partial KArboretum of Graphs With Bounded Treewidth
 J. Algorithms
, 1998
"... The notion of treewidth has seen to be a powerful vehicle for many graph algorithmic studies. This survey paper wants to give an overview of many classes of graphs that can be seen to have a uniform upper bound on the treewidth of graphs in the class. Also, some mutual relations between such classes ..."
Abstract

Cited by 255 (38 self)
 Add to MetaCart
The notion of treewidth has seen to be a powerful vehicle for many graph algorithmic studies. This survey paper wants to give an overview of many classes of graphs that can be seen to have a uniform upper bound on the treewidth of graphs in the class. Also, some mutual relations between such classes are discussed.
Beyond NPCompleteness for Problems of Bounded Width: Hardness for the W Hierarchy (Extended Abstract)
 In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing
, 1994
"... The parameterized computational complexity of a collection of wellknown problems including: Bandwidth, Precedence constrained kprocessor scheduling, Longest Common Subsequence, DNA physical mapping (or Intervalizing colored graphs), Perfect phylogeny (or Triangulating colored graphs), Colored cutw ..."
Abstract

Cited by 57 (21 self)
 Add to MetaCart
The parameterized computational complexity of a collection of wellknown problems including: Bandwidth, Precedence constrained kprocessor scheduling, Longest Common Subsequence, DNA physical mapping (or Intervalizing colored graphs), Perfect phylogeny (or Triangulating colored graphs), Colored cutwidth, and Feasible register assignment is explored. It is shown that these problems are hard for various levels of the W hierarchy. In the case of Precedence constrained kprocessor scheduling the results can be interpreted as providing substantial new complexity lower bounds on the outcome of [OPEN 8] of the Garey and Johnson list. We also obtain the conjectured "third strike" against Perfect phylogeny.
Structured Programs have Small TreeWidth and Good Register Allocation
 Information and Computation
, 1995
"... The register allocation problem for an imperative program is often modelled as the coloring problem of the interference graph of the controlflow graph of the program. The interference graph of a flow graph G is the intersection graph of some connected subgraphs of G. These connected subgraphs repre ..."
Abstract

Cited by 53 (1 self)
 Add to MetaCart
The register allocation problem for an imperative program is often modelled as the coloring problem of the interference graph of the controlflow graph of the program. The interference graph of a flow graph G is the intersection graph of some connected subgraphs of G. These connected subgraphs represent the lives, or life times, of variables, so the coloring problem models that two variables with overlapping life times should be in different registers. For general programs with unrestricted gotos, the interference graph can be any graph, and hence we cannot in general color within a factor O(n " ) from optimality unless NP=P. It is shown that if a graph has treewidth k, we can efficiently color any intersection graph of connected subgraphs within a factor (bk=2c + 1) from optimality. Moreover, it is shown that structured (j gotofree) programs, including, for example, short circuit evaluations and multiple exits from loops, have treewidth at most 6. Thus, for every structured progr...
Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs
, 1993
"... In this paper we give, for all constants k, l, explicit algorithms, that given a graph G = (V; E) with a treedecomposition of G with treewidth at most l, decide whether the treewidth (or pathwidth) of G is at most k, and if so, find a treedecomposition or (pathdecomposition) of G of width at most ..."
Abstract

Cited by 49 (11 self)
 Add to MetaCart
In this paper we give, for all constants k, l, explicit algorithms, that given a graph G = (V; E) with a treedecomposition of G with treewidth at most l, decide whether the treewidth (or pathwidth) of G is at most k, and if so, find a treedecomposition or (pathdecomposition) of G of width at most k, and that use O(V) time. In contrast with previous solutions, our algorithms do not rely on nonconstructive reasoning, and are single exponential in k and l. This result can be combined with a result of Reed [37], yielding explicit O(n log n) algorithms for the problem, given a graph G, to determine whether the treewidth (or pathwidth) of G is at most k, and if so, to find a tree (or path)decomposition of width at most k (k constant). Also, Bodlaender [13] has used the result of this paper to obtain linear time algorithms for these problems. We also show that for all constants k, there exists a polynomial time algorithm, that, when given a graph G = (V; E) with treewidth k, computes the pathwidth of G and a minimum path decomposition of G.
Bidimensionality: New Connections between FPT Algorithms and PTASs
"... We demonstrate a new connection between fixedparameter tractability and approximation algorithms for combinatorial optimization problems on planar graphs and their generalizations. Specifically, we extend the theory of socalled “bidimensional” problems to show that essentially all such problems ha ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
We demonstrate a new connection between fixedparameter tractability and approximation algorithms for combinatorial optimization problems on planar graphs and their generalizations. Specifically, we extend the theory of socalled “bidimensional” problems to show that essentially all such problems have both subexponential fixedparameter algorithms and PTASs. Bidimensional problems include e.g. feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertexremoval problems, dominating set, edge dominating set, rdominating set, diameter, connected dominating set, connected edge dominating set, and connected rdominating set. We obtain PTASs for all of these problems in planar graphs and certain generalizations; of particular interest are our results for the two wellknown problems of connected dominating set and general feedback vertex set for planar graphs and their generalizations, for which PTASs were not known to exist. Our techniques generalize and in some sense unify the two main previous approaches for designing PTASs in planar graphs, namely, the LiptonTarjan separator approach [FOCS’77] and the Baker layerwise decomposition approach [FOCS’83]. In particular, we replace the notion of separators with a more powerful tool from the bidimensionality theory, enabling the first approach to apply to a much broader class of minimization problems than previously possible; and through the use of a structural backbone and thickening of layers we demonstrate how the second approach can be applied to problems with a “nonlocal” structure.
Parallel Algorithms with Optimal Speedup for Bounded Treewidth
 Proceedings 22nd International Colloquium on Automata, Languages and Programming
, 1995
"... We describe the first parallel algorithm with optimal speedup for constructing minimumwidth tree decompositions of graphs of bounded treewidth. On nvertex input graphs, the algorithm works in O((logn)^2) time using O(n) operations on the EREW PRAM. We also give faster parallel algorithms with opti ..."
Abstract

Cited by 33 (10 self)
 Add to MetaCart
We describe the first parallel algorithm with optimal speedup for constructing minimumwidth tree decompositions of graphs of bounded treewidth. On nvertex input graphs, the algorithm works in O((logn)^2) time using O(n) operations on the EREW PRAM. We also give faster parallel algorithms with optimal speedup for the problem of deciding whether the treewidth of an input graph is bounded by a given constant and for a variety of problems on graphs of bounded treewidth, including all decision problems expressible in monadic secondorder logic. On nvertex input graphs, the algorithms use O(n) operations together with O(log n log n) time on the EREW PRAM, or O(log n) time on the CRCW PRAM.
Combinatorial Optimization on Graphs of Bounded Treewidth
, 2007
"... There are many graph problems that can be solved in linear or polynomial time with a dynamic programming algorithm when the input graph has bounded treewidth. For combinatorial optimization problems, this is a useful approach for obtaining fixedparameter tractable algorithms. Starting from trees an ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
There are many graph problems that can be solved in linear or polynomial time with a dynamic programming algorithm when the input graph has bounded treewidth. For combinatorial optimization problems, this is a useful approach for obtaining fixedparameter tractable algorithms. Starting from trees and seriesparallel graphs, we introduce the concepts of treewidth and tree decompositions, and illustrate the technique with the Weighted Independent Set problem as an example. The paper surveys some of the latest developments, putting an emphasis on applicability, on algorithms that exploit tree decompositions, and on algorithms that determine or approximate treewidth and find tree decompositions with optimal or close to optimal treewidth. Directions for further research and suggestions for further reading are also given.
Bidimensionality and Kernels
, 2010
"... Bidimensionality theory appears to be a powerful framework in the development of metaalgorithmic techniques. It was introduced by Demaine et al. [J. ACM 2005] as a tool to obtain subexponential time parameterized algorithms for bidimensional problems on Hminor free graphs. Demaine and Hajiaghayi ..."
Abstract

Cited by 21 (11 self)
 Add to MetaCart
Bidimensionality theory appears to be a powerful framework in the development of metaalgorithmic techniques. It was introduced by Demaine et al. [J. ACM 2005] as a tool to obtain subexponential time parameterized algorithms for bidimensional problems on Hminor free graphs. Demaine and Hajiaghayi [SODA 2005] extended the theory to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this paper, we establish a third metaalgorithmic direction for bidimensionality theory by relating it to the existence of linear kernels for parameterized problems. In parameterized complexity, each problem instance comes with a parameter k and the parameterized problem is said to admit a linear kernel if there is a polynomial time algorithm, called