Results 1 
8 of
8
Local Realizability Toposes and a Modal Logic for Computability (Extended Abstracts)
 Presented at Tutorial Workshop on Realizability Semantics, FLoC'99
, 1999
"... ) Steven Awodey 1 Lars Birkedal 2y Dana S. Scott 2z 1 Department of Philosophy, Carnegie Mellon University 2 School of Computer Science, Carnegie Mellon University April 15, 1999 Abstract This work is a step toward developing a logic for types and computation that includes both the usual ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
) Steven Awodey 1 Lars Birkedal 2y Dana S. Scott 2z 1 Department of Philosophy, Carnegie Mellon University 2 School of Computer Science, Carnegie Mellon University April 15, 1999 Abstract This work is a step toward developing a logic for types and computation that includes both the usual spaces of mathematics and constructions and spaces from logic and domain theory. Using realizability, we investigate a configuration of three toposes, which we regard as describing a notion of relative computability. Attention is focussed on a certain local map of toposes, which we study first axiomatically, and then by deriving a modal calculus as its internal logic. The resulting framework is intended as a setting for the logical and categorical study of relative computability. 1 Introduction We report here on the current status of research on the Logic of Types and Computation at Carnegie Mellon University [SAB + ]. The general goal of this research program is to develop a logical fra...
Developing Theories of Types and Computability via Realizability
, 2000
"... We investigate the development of theories of types and computability via realizability. ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
We investigate the development of theories of types and computability via realizability.
Exact Completions and Toposes
 University of Edinburgh
, 2000
"... Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
Toposes and quasitoposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the di#erent ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding "good " quotients of equivalence relations to a simple category with finite limits. This construction is called the exact completion of the original category. Exact completions are not always toposes and it was not known, not even in the realizability and presheaf cases, when or why toposes arise in this way. Exact completions can be obtained as the composition of two related constructions. The first one assigns to a category with finite limits, the "best " regular category (called its regular completion) that embeds it. The second assigns to
LeftDetermined Model Categories and Universal Homotopy Theories
"... We say that a model category is leftdetermined if the weak equivalences are generated (in a sense specified below) by the cofibrations. While the model category of simplicial sets is not leftdetermined, we show that its nonoriented variant, the category of symmetric simplicial sets (in the sense ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
We say that a model category is leftdetermined if the weak equivalences are generated (in a sense specified below) by the cofibrations. While the model category of simplicial sets is not leftdetermined, we show that its nonoriented variant, the category of symmetric simplicial sets (in the sense of Lawvere and Grandis) carries a natural leftdetermined model category structure. This is used to give another and, as we believe simpler, proof of a recent result of D. Dugger about universal homotopy theories. 1
Higher fundamental functors for simplicial sets, Cahiers Topologie Géom
 Diff. Catég
"... Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how this homotopy theory can be extended to the topos itself,!Smp. As a crucial advantage, the fundamental groupoid Π1:!Smp = Gpd is left adjoint to a natural functor M1: Gpd =!Smp, the symmetric nerve of a groupoid, and preserves all colimits – a strong van Kampen property. Similar results hold in all higher dimensions. Analogously, a notion of (nonreversible) directed homotopy can be developed in the ordinary simplicial topos Smp, with applications to image analysis as in [G3]. We have now a homotopy ncategory functor ↑Πn: Smp = nCat, left adjoint to a nerve Nn = nCat(↑Πn(∆[n]), –). This construction can be applied to various presheaf categories; the basic requirements seem to be: finite products of representables are finitely presentable and there is a representable 'standard interval'.
Elementary Axioms for Local Maps of Toposes
 Manuscript, submitted for 1999 Category Theory Conference in Coimbra
, 2001
"... We present a complete elementary axiomatization of local maps of toposes. 1 ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We present a complete elementary axiomatization of local maps of toposes. 1
Part II Local Realizability Toposes and a Modal Logic for
"... 5.1 Definition and Examples 5.1.1 Definition and Definability Results A tripos is a weak tripos with disjunction which has a (weak) generic object. Explicitly we define: ..."
Abstract
 Add to MetaCart
5.1 Definition and Examples 5.1.1 Definition and Definability Results A tripos is a weak tripos with disjunction which has a (weak) generic object. Explicitly we define:
1 Higher fundamental functors for simplicial sets ( *)
, 2000
"... Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form a cartesian closed subcategory in the topos!Smp of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how this homotopy theory can ..."
Abstract
 Add to MetaCart
Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form a cartesian closed subcategory in the topos!Smp of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how this homotopy theory can be extended to the topos itself,!Smp. As a crucial advantage, the fundamental groupoid Π1:!Smp = Gpd is left adjoint to a natural functor M1: Gpd =!Smp, the symmetric nerve of a groupoid, and preserves all colimits – a strong van Kampen property. Similar results hold in all higher dimensions. Analogously, a notion of (nonreversible) directed homotopy can be developed in the ordinary simplicial topos Smp, with applications to image analysis as in [G3]. We have now a homotopy ncategory functor ↑Πn: Smp = nCat, left adjoint to a nerve Nn = nCat(↑Πn(∆[n]), –). This construction can be applied to various presheaf categories; the basic requirements seem to be: finite products of representables are finitely presentable and there is a representable 'standard interval'.