Results 1  10
of
13
Interiorpoint methods for nonconvex nonlinear programming: Filter methods and merit functions
 Computational Optimization and Applications
, 2002
"... Abstract. In this paper, we present global and local convergence results for an interiorpoint method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an ℓ1 penalty approach to relax all constraints, to provide regularization, and to bound ..."
Abstract

Cited by 96 (8 self)
 Add to MetaCart
Abstract. In this paper, we present global and local convergence results for an interiorpoint method for nonlinear programming and analyze the computational performance of its implementation. The algorithm uses an ℓ1 penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’s strictly feasible interiorpoint method [12]. The global convergence of the algorithm is proved under mild assumptions, and local analysis shows that it converges Qquadratically for a large class of problems. The proposed approach is the first to simultaneously have all of the following properties while solving a general nonconvex nonlinear programming problem: (1) the convergence analysis does not assume boundedness of dual iterates, (2) local convergence does not require the Linear Independence Constraint Qualification, (3) the solution of the penalty problem is shown to locally converge to optima that may not satisfy the KarushKuhnTucker conditions, and (4) the algorithm is applicable to mathematical programs with equilibrium constraints. Numerical testing on a set of general nonlinear programming problems, including degenerate problems and infeasible problems, confirm the theoretical results. We also provide comparisons to a highlyefficient nonlinear solver and thoroughly analyze the effects of enforcing theoretical convergence guarantees on the computational performance of the algorithm. 1.
Multiple centrality corrections in a primaldual method for linear programming
 Computational Optimization and Applications
, 1996
"... ..."
Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization, Optimization Methods and Software
, 1999
"... ..."
(Show Context)
The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming
 in Advances in Sensitivity Analysis and Parametric Programming
, 1996
"... In this chapter we describe the optimal set approach for sensitivity analysis for LP. We show that optimal partitions and optimal sets remain constant between two consecutive transitionpoints of the optimal value function. The advantage of using this approach instead of the classical approach (usin ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
(Show Context)
In this chapter we describe the optimal set approach for sensitivity analysis for LP. We show that optimal partitions and optimal sets remain constant between two consecutive transitionpoints of the optimal value function. The advantage of using this approach instead of the classical approach (using optimal bases) is shown. Moreover, we present an algorithm to compute the partitions, optimal sets and the optimal value function. This is a new algorithm and uses primal and dual optimal solutions. We also extend some of the results to parametric quadratic programming, and discuss differences and resemblances with the linear programming case.
Sensitivity Analysis in (Degenerate) Quadratic Programming
 DELFT UNIVERSITY OF TECHNOLOGY
, 1996
"... In this paper we deal with sensitivity analysis in convex quadratic programming, without making assumptions on nondegeneracy, strict convexity of the objective function, and the existence of a strictly complementary solution. We show that the optimal value as a function of a righthand side element ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
In this paper we deal with sensitivity analysis in convex quadratic programming, without making assumptions on nondegeneracy, strict convexity of the objective function, and the existence of a strictly complementary solution. We show that the optimal value as a function of a righthand side element (or an element of the linear part of the objective) is piecewise quadratic, where the pieces can be characterized by maximal complementary solutions and tripartitions. Further, we investigate differentiability of this function. A new algorithm to compute the optimal value function is proposed. Finally, we discuss the advantages of this approach when applied to meanvariance portfolio models.
Basis and Tripartition Identification for Quadratic Programming and Linear Complementarity Problems  From an interior solution to an optimal basis and viceversa
, 1996
"... Optimal solutions of interior point algorithms for linear and quadratic programming and linear complementarity problems provide maximal complementary solutions. Maximal complementary solutions can be characterized by optimal (tri)partitions. On the other hand, the solutions provided by simplexb ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
(Show Context)
Optimal solutions of interior point algorithms for linear and quadratic programming and linear complementarity problems provide maximal complementary solutions. Maximal complementary solutions can be characterized by optimal (tri)partitions. On the other hand, the solutions provided by simplexbased pivot algorithms are given in terms of complementary bases. A basis identification algorithm is an algorithm which generates a complementary basis, starting from any complementary solution. A tripartition identification algorithm is an algorithm which generates a maximal complementary solution (and its corresponding tripartition), starting from any complementary solution. In linear programming such algorithms were respectively proposed by Megiddo in 1991 and Balinski and Tucker in 1969. In this paper we will present identification algorithms for quadratic programming and linear complementarity problems with sufficient matrices. The presented algorithms are based on the principal...
On Free Variables In Interior Point Methods
, 1997
"... this paper wehave selected the primaldual logarithmic barrier algorithm to present our ideas, because it and its modified versions are considered, in general, to be the most efficient in practice. The computational results presented in this paper were obtained using implementations of this algorith ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
this paper wehave selected the primaldual logarithmic barrier algorithm to present our ideas, because it and its modified versions are considered, in general, to be the most efficient in practice. The computational results presented in this paper were obtained using implementations of this algorithm. It is to be noted, however, that this choice has notational consequences only. Practically,anyinterior point method, even nonlinear ones can be discussed in a similar linear algebra framework. Let us consider the linear programming problem
Regularized Symmetric Inde nite Systems in Interior Point Methods for Linear and Quadratic Optimization
"... ..."
(Show Context)
unknown title
"... The primaldual infeasibleinteriorpoint algorithm which we will discuss has stemmed from the primaldual interiorpoint algorithm (Megiddo [16], Kojima, Mizuno, and Yoshise ..."
Abstract
 Add to MetaCart
(Show Context)
The primaldual infeasibleinteriorpoint algorithm which we will discuss has stemmed from the primaldual interiorpoint algorithm (Megiddo [16], Kojima, Mizuno, and Yoshise