Results 1  10
of
78
ConjunctiveQuery Containment and Constraint Satisfaction
 Journal of Computer and System Sciences
, 1998
"... Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in c ..."
Abstract

Cited by 142 (15 self)
 Add to MetaCart
(Show Context)
Conjunctivequery containment is recognized as a fundamental problem in database query evaluation and optimization. At the same time, constraint satisfaction is recognized as a fundamental problem in artificial intelligence. What do conjunctivequery containment and constraint satisfaction have in common? Our main conceptual contribution in this paper is to point out that, despite their very different formulation, conjunctivequery containment and constraint satisfaction are essentially the same problem. The reason is that they can be recast as the following fundamental algebraic problem: given two finite relational structures A and B, is there a homomorphism h : A ! B? As formulated above, the homomorphism problem is uniform in the sense that both relational structures A and B are part of the input. By fixing the structure B, one obtains the following nonuniform problem: given a finite relational structure A, is there a homomorphism h : A ! B? In general, nonuniform tractability results do not uniformize. Thus, it is natural to ask: which tractable cases of nonuniform tractability results for constraint satisfaction and conjunctivequery containment do uniformize? Our main technical contribution in this paper is to show that several cases of tractable nonuniform constraint satisfaction problems do indeed uniformize. We exhibit three nonuniform tractability results that uniformize and, thus, give rise to polynomialtime solvable cases of constraint satisfaction and conjunctivequery containment.
Reasoning about The Past with TwoWay Automata
 In 25th International Colloqium on Automata, Languages and Programming, ICALP ’98
, 1998
"... Abstract. The pcalculus can be viewed as essentially the "ultimate" program logic, as it expressively subsumes all propositional program logics, including dynamic logics, process logics, and temporal logics. It is known that the satisfiability problem for the pcalculus is EXPTIMEcomplete ..."
Abstract

Cited by 134 (12 self)
 Add to MetaCart
(Show Context)
Abstract. The pcalculus can be viewed as essentially the "ultimate" program logic, as it expressively subsumes all propositional program logics, including dynamic logics, process logics, and temporal logics. It is known that the satisfiability problem for the pcalculus is EXPTIMEcomplete. This upper bound, however, is known for a version of the logic that has only forward modalities, which express weakest preconditions, but not backward modalities, which express strongest postconditions. Our main result in this paper is an exponential time upper bound for the satisfiability problem of the pcalculus with both forward and backward modalities. To get this result we develop a theory of twoway alternating automata on infinite trees. 1
Composing Mappings among Data Sources
 In VLDB
, 2003
"... Semantic mappings between data sources play a key role in several data sharing architectures. Mappings provide the relationships between data stored in different sources, and therefore enable answering queries that require data from other nodes in a data sharing network. Composing mappings is one of ..."
Abstract

Cited by 123 (8 self)
 Add to MetaCart
Semantic mappings between data sources play a key role in several data sharing architectures. Mappings provide the relationships between data stored in different sources, and therefore enable answering queries that require data from other nodes in a data sharing network. Composing mappings is one of the core problems that lies at the heart of several optimization methods in data sharing networks, such as caching frequently traversed paths and redundancy analysis.
Data Complexity of Reasoning in Very Expressive Description Logics
 IN PROC. IJCAI 2005
, 2005
"... Data complexity of reasoning in description logics (DLs) estimates the performance of reasoning algorithms measured in the size of the ABox only. We show that, even for the very expressive DL SHIQ, satisfiability checking is data complete for NP. For applications with large ABoxes, this can be a mor ..."
Abstract

Cited by 103 (22 self)
 Add to MetaCart
Data complexity of reasoning in description logics (DLs) estimates the performance of reasoning algorithms measured in the size of the ABox only. We show that, even for the very expressive DL SHIQ, satisfiability checking is data complete for NP. For applications with large ABoxes, this can be a more accurate estimate than the usually considered combined complexity, which is EXPTIMEcomplete. Furthermore, we identify an expressive fragment, HornSHIQ, which is data complete for P, thus being very appealing for practical usage.
A general Datalogbased framework for tractable query answering over ontologies
 In Proc. PODS2009. ACM
, 2009
"... Ontologies play a key role in the Semantic Web [4], data modeling, and information integration [16]. Recent trends in ontological reasoning have shifted from decidability issues to tractability ones, as e.g. reflected by the work on the DLLite family of tractable description logics (DLs) [11, 19]. ..."
Abstract

Cited by 72 (18 self)
 Add to MetaCart
(Show Context)
Ontologies play a key role in the Semantic Web [4], data modeling, and information integration [16]. Recent trends in ontological reasoning have shifted from decidability issues to tractability ones, as e.g. reflected by the work on the DLLite family of tractable description logics (DLs) [11, 19]. An important result of these works is that the main
The piazza peer data management system
 IEEE Trans. Knowl. Data Eng
"... endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution m ..."
Abstract

Cited by 60 (0 self)
 Add to MetaCart
endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubspermissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
On the Decision Problem for TwoVariable FirstOrder Logic
, 1997
"... We identify the computational complexity of the satisfiability problem for FO², the fragment of firstorder logic consisting of all relational firstorder sentences with at most two distinct variables. Although this fragment was shown to be decidable a long time ago, the computational complexity ..."
Abstract

Cited by 54 (1 self)
 Add to MetaCart
We identify the computational complexity of the satisfiability problem for FO², the fragment of firstorder logic consisting of all relational firstorder sentences with at most two distinct variables. Although this fragment was shown to be decidable a long time ago, the computational complexity of its decision problem has not been pinpointed so far. In 1975 Mortimer proved that FO² has the finitemodel property, which means that if an FO²sentence is satisfiable, then it has a finite model. Moreover, Mortimer showed that every satisfiable FO²sentence has a model whose size is at most doubly exponential in the size of the sentence. In this paper, we improve Mortimer's bound by one exponential and show that every satisfiable FO²sentence has a model whose size is at most exponential in the size of the sentence. As a consequence, we establish that the satisfiability problem for FO² is NEXPTIMEcomplete.
Conditional XPath, the first order complete XPath dialect
, 2004
"... XPath is the W3Cstandard node addressing language for XML documents. XPath is still under development and its technical aspects are intensively studied. What is missing at present is a clear characterization of the expressive power of XPath, be it either semantical or with reference to some well e ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
XPath is the W3Cstandard node addressing language for XML documents. XPath is still under development and its technical aspects are intensively studied. What is missing at present is a clear characterization of the expressive power of XPath, be it either semantical or with reference to some well established existing (logical) formalism. Core XPath (the logical core of XPath 1.0 defined by Gottlob et al.) cannot express queries with conditional paths as exemplified by "do a child step, while test is true at the resulting node." In a firstorder complete extension of Core XPath, such queries are expressible. We add conditional axis relations to Core XPath and show that the resulting language, called conditional XPath, is equally expressive as firstorder logic when interpreted on ordered trees. Both the result, the extended XPath language, and the proof are closely related to temporal logic. Specifically, while Core XPath may be viewed as a simple temporal logic, conditional XPath extends this with (counterparts of) the since and until operators.
Conditional XPath
 ACM Trans. Database Syst
, 2005
"... Abstract. XPath 1.0 is a variable free language designed to specify paths between nodes in XML documents. Such paths can alternatively be specified in firstorder logic. The logical abstraction of XPath 1.0, usually called Navigational or Core XPath, is not powerful enough to express every firstord ..."
Abstract

Cited by 49 (4 self)
 Add to MetaCart
(Show Context)
Abstract. XPath 1.0 is a variable free language designed to specify paths between nodes in XML documents. Such paths can alternatively be specified in firstorder logic. The logical abstraction of XPath 1.0, usually called Navigational or Core XPath, is not powerful enough to express every firstorder definable path. In this paper we show that there exists a natural expansion of Core XPath in which every firstorder definable path in XML document trees is expressible. This expansion is called Conditional XPath. It contains additional axis relations of the form (child::n[F])+, denoting the transitive closure of the path expressed by child::n[F]. The difference with XPath’s descendant::n[F] is that the path (child::n[F])+ is conditional on the fact that all nodes in between should be labeled by n and should make the predicate F true. This result can be viewed as the XPath analogue of the expressive completeness of the relational algebra with respect to firstorder logic. 1
On Logics with Two Variables
 Theoretical Computer Science
, 1999
"... This paper is a survey and systematic presentation of decidability and complexity issues for modal and nonmodal twovariable logics. A classical result due to Mortimer says that the twovariable fragment of firstorder logic, denoted FO 2 , has the finite model property and is therefore decidable ..."
Abstract

Cited by 47 (8 self)
 Add to MetaCart
(Show Context)
This paper is a survey and systematic presentation of decidability and complexity issues for modal and nonmodal twovariable logics. A classical result due to Mortimer says that the twovariable fragment of firstorder logic, denoted FO 2 , has the finite model property and is therefore decidable for satisfiability. One of the reasons for the significance of this result is that many propositional modal logics can be embedded into FO 2 . Logics that are of interest for knowledge representation, for the specification and verification of concurrent systems and for other areas of computer science are often defined (or can be viewed) as extensions of modal logics by features like counting constructs, path quantifiers, transitive closure operators, least and greatest fixed points etc. Examples of such logics are computation tree logic CTL, the modal ¯calculus L¯ , or popular description logics used in artificial intelligence. Although the additional features are usually not firstorder...