Results 1  10
of
36
The NPcompleteness column: an ongoing guide
 JOURNAL OF ALGORITHMS
, 1987
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freem ..."
Abstract

Cited by 242 (0 self)
 Add to MetaCart
(Show Context)
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NPCompleteness," W. H. Freeman & Co., New York, 1979 (hereinafter referred to as "[G&J]"; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
BPP has Subexponential Time Simulations unless EXPTIME has Publishable Proofs (Extended Abstract)
, 1993
"... ) L'aszl'o Babai Noam Nisan y Lance Fortnow z Avi Wigderson University of Chicago Hebrew University Abstract We show that BPP can be simulated in subexponential time for infinitely many input lengths unless exponential time ffl collapses to the second level of the polynomialtime ..."
Abstract

Cited by 111 (9 self)
 Add to MetaCart
) L'aszl'o Babai Noam Nisan y Lance Fortnow z Avi Wigderson University of Chicago Hebrew University Abstract We show that BPP can be simulated in subexponential time for infinitely many input lengths unless exponential time ffl collapses to the second level of the polynomialtime hierarchy, ffl has polynomialsize circuits and ffl has publishable proofs (EXPTIME=MA). We also show that BPP is contained in subexponential time unless exponential time has publishable proofs for infinitely many input lengths. In addition, we show BPP can be simulated in subexponential time for infinitely many input lengths unless there exist unary languages in MA n P . The proofs are based on the recent characterization of the power of multiprover interactive protocols and on random selfreducibility via low degree polynomials. They exhibit an interplay between Boolean circuit simulation, interactive proofs and classical complexity classes. An important feature of this proof is that it does not ...
New Collapse Consequences Of NP Having Small Circuits
, 1995
"... . We show that if a selfreducible set has polynomialsize circuits, then it is low for the probabilistic class ZPP(NP). As a consequence we get a deeper collapse of the polynomialtime hierarchy PH to ZPP(NP) under the assumption that NP has polynomialsize circuits. This improves on the wellknown ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
. We show that if a selfreducible set has polynomialsize circuits, then it is low for the probabilistic class ZPP(NP). As a consequence we get a deeper collapse of the polynomialtime hierarchy PH to ZPP(NP) under the assumption that NP has polynomialsize circuits. This improves on the wellknown result of Karp, Lipton, and Sipser (1980) stating a collapse of PH to its second level \Sigma P 2 under the same assumption. As a further consequence, we derive new collapse consequences under the assumption that complexity classes like UP, FewP, and C=P have polynomialsize circuits. Finally, we investigate the circuitsize complexity of several language classes. In particular, we show that for every fixed polynomial s, there is a set in ZPP(NP) which does not have O(s(n))size circuits. Key words. polynomialsize circuits, advice classes, lowness, randomized computation AMS subject classifications. 03D10, 03D15, 68Q10, 68Q15 1. Introduction. The question of whether intractable sets ca...
ResourceBounded Measure and Randomness
"... We survey recent results on resourcebounded measure and randomness in structural complexity theory. In particular, we discuss applications of these concepts to the exponential time complexity classes and . Moreover, we treat timebounded genericity and stochasticity concepts which are weaker than ..."
Abstract

Cited by 43 (6 self)
 Add to MetaCart
We survey recent results on resourcebounded measure and randomness in structural complexity theory. In particular, we discuss applications of these concepts to the exponential time complexity classes and . Moreover, we treat timebounded genericity and stochasticity concepts which are weaker than timebounded randomness but which suffice for many of the applications in complexity theory.
Circuit Complexity before the Dawn of the New Millennium
, 1997
"... The 1980's saw rapid and exciting development of techniques for proving lower bounds in circuit complexity. This pace has slowed recently, and there has even been work indicating that quite different proof techniques must be employed to advance beyond the current frontier of circuit lower bound ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
The 1980's saw rapid and exciting development of techniques for proving lower bounds in circuit complexity. This pace has slowed recently, and there has even been work indicating that quite different proof techniques must be employed to advance beyond the current frontier of circuit lower bounds. Although this has engendered pessimism in some quarters, there have in fact been many positive developments in the past few years showing that significant progress is possible on many fronts. This paper is a (necessarily incomplete) survey of the state of circuit complexity as we await the dawn of the new millennium.
NP Might Not Be As Easy As Detecting Unique Solutions
, 1998
"... We construct an oracle A such that P A = \PhiP A and NP A = EXP A : This relativized world has several amazing properties: ffl The oracle A gives the first relativized world where one can solve satisfiability on formulae with at most one assignment yet P 6= NP. ffl The oracle A is the fi ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
We construct an oracle A such that P A = \PhiP A and NP A = EXP A : This relativized world has several amazing properties: ffl The oracle A gives the first relativized world where one can solve satisfiability on formulae with at most one assignment yet P 6= NP. ffl The oracle A is the first where P A = UP A 6= NP A = coNP A : ffl The construction gives a much simpler proof than Fenner, Fortnow and Kurtz of a relativized world where all NPcomplete sets are polynomialtime isomorphic. It is the first such computable oracle. ffl Relative to A we have a collapse of \PhiEXP A ` ZPP A ` P A /poly. We also create a different relativized world where there exists a set L in NP that is NP complete under reductions that make one query to L but not under traditional manyone reductions. This contrasts with the result of Buhrman, Spaan and Torenvliet showing that these two completeness notions for NEXP coincide. 1 Introduction Valiant and Vazirani [VV86] show the sur...
Limitations of the Upward Separation Technique
, 1990
"... this paper was presented at the 16th International Colloquium on Automata, Languages, and Programming [3] ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
this paper was presented at the 16th International Colloquium on Automata, Languages, and Programming [3]
A generalization of resourcebounded measure, with application to the BPP vs. EXP problem
 SIAM J. Comput
, 2000
"... We introduce resourcebounded betting games, and propose a generalization of Lutz’s resourcebounded measure in which the choice of next string to bet on is fully adaptive. Lutz’s martingales are equivalent to betting games constrained to bet on strings in lexicographic order. We show that if strong ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
We introduce resourcebounded betting games, and propose a generalization of Lutz’s resourcebounded measure in which the choice of next string to bet on is fully adaptive. Lutz’s martingales are equivalent to betting games constrained to bet on strings in lexicographic order. We show that if strong pseudorandom number generators exist, then betting games are equivalent to martingales, for measure on E and EXP. However, we construct betting games that succeed on certain classes whose Lutz measures are important open problems: the class of polynomialtime Turingcomplete languages in EXP, and its superclass of polynomialtime Turingautoreducible languages. If an EXPmartingale succeeds on either of these classes, or if betting games have the “finite union property ” possessed
Onesided Versus Twosided Error in Probabilistic Computation
, 1999
"... We demonstrate how to use Lautemann's proof that BPP is in \Sigma p 2 to exhibit that BPP is in RP PromiseRP . Immediate consequences show that if PromiseRP is easy or if there exist quick hitting set generators then P = BPP. Our proof vastly simpliøes the proofs of the later result due to Andr ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
We demonstrate how to use Lautemann's proof that BPP is in \Sigma p 2 to exhibit that BPP is in RP PromiseRP . Immediate consequences show that if PromiseRP is easy or if there exist quick hitting set generators then P = BPP. Our proof vastly simpliøes the proofs of the later result due to Andreev, Clementi and Rolim and Andreev, Clementi, Rolim and Trevisan. Clementi, Rolim and Trevisan question whether the promise is necessary for the above results, i.e., whether BPP ` RP RP for instance. We give a relativized world where P = RP 6= BPP and thus the promise is indeed needed.