Results 1  10
of
10
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 63 (9 self)
 Add to MetaCart
(Show Context)
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
Cyclic Lambda Calculi
, 1997
"... . We precisely characterize a class of cyclic lambdagraphs, and then give a sound and complete axiomatization of the terms that represent a given graph. The equational axiom system is an extension of lambda calculus with the letrec construct. In contrast to current theories, which impose restrictio ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
. We precisely characterize a class of cyclic lambdagraphs, and then give a sound and complete axiomatization of the terms that represent a given graph. The equational axiom system is an extension of lambda calculus with the letrec construct. In contrast to current theories, which impose restrictions on where the rewriting can take place, our theory is very liberal, e.g., it allows rewriting under lambdaabstractions and on cycles. As shown previously, the reduction theory is nonconfluent. We thus introduce an approximate notion of confluence. Using this notion we define the infinite normal form or L'evyLongo tree of a cyclic term. We show that the infinite normal form defines a congruence on the set of terms. We relate our cyclic lambda calculus to the traditional lambda calculus and to the infinitary lambda calculus. Since most implementations of nonstrict functional languages rely on sharing to avoid repeating computations, we develop a variant of our calculus that enforces the ...
Topological Incompleteness and Order Incompleteness of the Lambda Calculus
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2001
"... A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In th ..."
Abstract

Cited by 27 (18 self)
 Add to MetaCart
(Show Context)
A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In this paper we introduce a new technique to prove the incompleteness of a wide range of lambda calculus semantics, including the strongly stable one, whose incompleteness had been conjectured by BastoneroGouy [6, 7] and by Berline [9]. The main results of the paper are a topological incompleteness theorem and an order incompleteness theorem. In the first one we show the incompleteness of the lambda calculus semantics given in terms of topological models whose topology satisfies a property of connectedness. In the second one we prove the incompleteness of the class of partially ordered models with finitely many connected components w.r.t. the Alexandroff topology. A further result of the paper is a proof of the completeness of the semantics of the lambda calculus given in terms of topological models whose topology is nontrivial and metrizable.
A Continuum of Theories of Lambda Calculus Without Semantics
 16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2001), IEEE COMPUTER
, 2001
"... In this paper we give a topological proof of the following result: There exist 2 @0 lambda theories of the untyped lambda calculus without a model in any semantics based on Scott's view of models as partially ordered sets and of functions as monotonic functions. As a consequence of this resul ..."
Abstract

Cited by 18 (13 self)
 Add to MetaCart
In this paper we give a topological proof of the following result: There exist 2 @0 lambda theories of the untyped lambda calculus without a model in any semantics based on Scott's view of models as partially ordered sets and of functions as monotonic functions. As a consequence of this result, we positively solve the conjecture, stated by BastoneroGouy [6, 7] and by Berline [10], that the strongly stable semantics is incomplete. 1
Towards Lambda Calculus OrderIncompleteness
 Workshop on Böhm theorem: applications to Computer Science Theory (BOTH 2001) Electronics Notes in Theoretical Computer Science
"... After Scott, mathematical models of the typefree lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [47] asked if there is a lambda theory that is not induced by any nontrivially partially orde ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
(Show Context)
After Scott, mathematical models of the typefree lambda calculus are constructed by order theoretic methods and classified into semantics according to the nature of their representable functions. Selinger [47] asked if there is a lambda theory that is not induced by any nontrivially partially ordered model (orderincompleteness problem). In terms of Alexandroff topology (the strongest topology whose specialization order is the order of the considered model) the problem of order incompleteness can be also characterized as follows: a lambda theory T is orderincomplete if, and only if, every partially ordered model of T is partitioned by the Alexandroff topology in an infinite number of connected components (= minimal upper and lower sets), each one containing exactly one element of the model. Towards an answer to the orderincompleteness problem, we give a topological proof of the following result: there exists a lambda theory whose partially ordered models are partitioned by the Alexandroff topology in an infinite number of connected components, each one containing at most one term denotation. This result implies the incompleteness of every semantics of lambda calculus given in terms of partially ordered models whose Alexandroff topology has a finite number of connected components (e.g. the Alexandroff topology of the models of the continuous, stable and strongly stable semantics is connected).
Functionality, polymorphism, and concurrency: a mathematical investigation of programming paradigms
, 1997
"... ..."
Effective λmodels versus recursively enumerable λtheories
"... A longstanding open problem is whether there exists a nonsyntactical model of the untyped λcalculus whose theory is exactly the least λtheory λβ. In this paper we investigate the more general question of whether the equational/order theory of a model of the untyped λcalculus can be recursively e ..."
Abstract
 Add to MetaCart
A longstanding open problem is whether there exists a nonsyntactical model of the untyped λcalculus whose theory is exactly the least λtheory λβ. In this paper we investigate the more general question of whether the equational/order theory of a model of the untyped λcalculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of λcalculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be λβ, λβη. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott’s semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is the minimum among the theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards LöwenheimSkolem theorem.
A Note on Absolutely Unorderable Combinatory Algebras
, 2001
"... Plotkin [18] has conjectured that there exists an absolutely unorderable combinatory algebra, i.e. an algebra which cannot be embedded in another algebra that admits a nontrivial compatible partial order. In this paper we prove that a wide class of combinatory algebras admits extensions with a non ..."
Abstract
 Add to MetaCart
(Show Context)
Plotkin [18] has conjectured that there exists an absolutely unorderable combinatory algebra, i.e. an algebra which cannot be embedded in another algebra that admits a nontrivial compatible partial order. In this paper we prove that a wide class of combinatory algebras admits extensions with a nontrivial compatible partial order.
Effective λmodels versus recursively enumerable λtheories
"... Abstract. A longstanding open problem is whether there exists a nonsyntactical model of the untyped λcalculus whose theory is exactly the least λtheory λβ. In this paper we investigate the more general question of whether the equational/order theory of a model of the untyped λcalculus can be rec ..."
Abstract
 Add to MetaCart
Abstract. A longstanding open problem is whether there exists a nonsyntactical model of the untyped λcalculus whose theory is exactly the least λtheory λβ. In this paper we investigate the more general question of whether the equational/order theory of a model of the untyped λcalculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of λcalculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be λβ, λβη. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott’s semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is the minimum among the theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards LöwenheimSkolem theorem. key words: λcalculus, effective λmodels, effectively given domains, recursively enumerable λtheories, graph models, LöwenheimSkolem theorem. Contents 1