Results 1 
1 of
1
Gems In The Field Of Bounded Queries
"... Let A be a set. Given {x1 , . . . , xn}, I may want to know (1) which elements of {x1 , . . . , xn} are in A, (2) how many elements of {x1 , . . . , xn} are in A, or (3) is {x1 , . . . , xn}#A  even. All of these can be determined with n queries to A. For which A,n can we get by with fe ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Let A be a set. Given {x1 , . . . , xn}, I may want to know (1) which elements of {x1 , . . . , xn} are in A, (2) how many elements of {x1 , . . . , xn} are in A, or (3) is {x1 , . . . , xn}#A  even. All of these can be determined with n queries to A. For which A,n can we get by with fewer queries? Other questions involving `how many queries do you need to . . .' have been posed and (some) answered. This article is a survey of the gems in the fieldthe results that both answer an interesting question and have a nice proof. Keywords: Queries, Computability