Results 1  10
of
27
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 726 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Marginal likelihood from the Gibbs output
 J. Am. Stat. Assoc
, 1995
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 518 (39 self)
 Add to MetaCart
(Show Context)
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Using simulation methods for Bayesian econometric models: Inference, development and communication
 Econometric Review
, 1999
"... This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a ..."
Abstract

Cited by 317 (18 self)
 Add to MetaCart
This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, econometricians) on the one hand and remote clients (for example, decision makers) on the other, enabling clients to vary the prior distributions and functions of interest employed by investigators. A theme of the paper is the practicality of subjective Bayesian methods. To this end, the paper describes publicly available software for Bayesian inference, model development, and communication and provides illustrations using two simple econometric models. *This paper was originally prepared for the Australasian meetings of the Econometric Society in Melbourne, Australia,
Simulating Normalized Constants: From Importance Sampling to Bridge Sampling to Path Sampling
, 1998
"... Computing (ratios of) normalizing constants of probability models is a fundamental computational problem for many statistical and scientific studies. Monte Carlo simulation is an effective technique, especially with complex and highdimensional models. This paper aims to bring to the attention of ..."
Abstract

Cited by 210 (5 self)
 Add to MetaCart
Computing (ratios of) normalizing constants of probability models is a fundamental computational problem for many statistical and scientific studies. Monte Carlo simulation is an effective technique, especially with complex and highdimensional models. This paper aims to bring to the attention of general statistical audiences of some effective methods originating from theoretical physics and at the same time to explore these methods from a more statistical perspective, through establishing theoretical connections and illustrating their uses with statistical problems. We show that the acceptance ratio method and thermodynamic integration are natural generalizations of importance sampling, which is most familiar to statistical audiences. The former generalizes importance sampling through the use of a single “bridge ” density and is thus a case of bridge sampling in the sense of Meng and Wong. Thermodynamic integration, which is also known in the numerical analysis literature as Ogata’s method for highdimensional integration, corresponds to the use of infinitely many and continuously connected bridges (and thus a “path”). Our path sampling formulation offers more flexibility and thus potential efficiency to thermodynamic integration, and the search of optimal paths turns out to have close connections with the Jeffreys prior density and the Rao and Hellinger distances between two densities. We provide an informative theoretical example as well as two empirical examples (involving 17 to 70dimensional integrations) to illustrate the potential and implementation of path sampling. We also discuss some open problems.
A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
 Journal of the American Statistical Association
, 1995
"... ..."
(Show Context)
Practical Bayesian Density Estimation Using Mixtures Of Normals
 Journal of the American Statistical Association
, 1995
"... this paper, we propose some solutions to these problems. Our goal is to come up with a simple, practical method for estimating the density. This is an interesting problem in its own right, as well as a first step towards solving other inference problems, such as providing more flexible distributions ..."
Abstract

Cited by 151 (2 self)
 Add to MetaCart
this paper, we propose some solutions to these problems. Our goal is to come up with a simple, practical method for estimating the density. This is an interesting problem in its own right, as well as a first step towards solving other inference problems, such as providing more flexible distributions in hierarchical models. To see why the posterior is improper under the usual reference prior, we write the model in the following way. Let Z = (Z 1 ; : : : ; Z n ) and X = (X 1 ; : : : ; X n ). The Z
A Bayesian Approach to Causal Discovery
, 1997
"... We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that t ..."
Abstract

Cited by 98 (1 self)
 Add to MetaCart
We examine the Bayesian approach to the discovery of directed acyclic causal models and compare it to the constraintbased approach. Both approaches rely on the Causal Markov assumption, but the two differ significantly in theory and practice. An important difference between the approaches is that the constraintbased approach uses categorical information about conditionalindependence constraints in the domain, whereas the Bayesian approach weighs the degree to which such constraints hold. As a result, the Bayesian approach has three distinct advantages over its constraintbased counterpart. One, conclusions derived from the Bayesian approach are not susceptible to incorrect categorical decisions about independence facts that can occur with data sets of finite size. Two, using the Bayesian approach, finer distinctions among model structuresboth quantitative and qualitativecan be made. Three, information from several models can be combined to make better inferences and to better ...
Estimating Bayes Factors via Posterior Simulation with the LaplaceMetropolis Estimator
 Journal of the American Statistical Association
, 1994
"... The key quantity needed for Bayesian hypothesis testing and model selection is the marginal likelihood for a model, also known as the integrated likelihood, or the marginal probability of the data. In this paper we describe a way to use posterior simulation output to estimate marginal likelihoods. W ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
The key quantity needed for Bayesian hypothesis testing and model selection is the marginal likelihood for a model, also known as the integrated likelihood, or the marginal probability of the data. In this paper we describe a way to use posterior simulation output to estimate marginal likelihoods. We describe the basic LaplaceMetropolis estimator for models without random effects. For models with random effects the compound LaplaceMetropolis estimator is introduced. This estimator is applied to data from the World Fertility Survey and shown to give accurate results. Batching of simulation output is used to assess the uncertainty involved in using the compound LaplaceMetropolis estimator. The method allows us to test for the effects of independent variables in a random effects model, and also to test for the presence of the random effects. KEY WORDS: LaplaceMetropolis estimator; Random effects models; Marginal likelihoods; Posterior simulation; World Fertility Survey. 1 Introduction...
Foundations of Assisted Cognition Systems
, 2003
"... this report. Kautz [79] modeled plan recognition logically in a manner that allowed goals and plans to be described at various levels of abstraction. Etzioni et al. [94, 95, 92, 93] developed a version space algorithm for plan recognition that is provably sound and polynomial time [94, 93]. Weld et ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
this report. Kautz [79] modeled plan recognition logically in a manner that allowed goals and plans to be described at various levels of abstraction. Etzioni et al. [94, 95, 92, 93] developed a version space algorithm for plan recognition that is provably sound and polynomial time [94, 93]. Weld et al. developed goal recognition algorithms using inductive logic programming [90] and versionspace algebra [89, 168, 88] in the context of programming by demonstration
MCMC for normalized random measure mixture models Statistical Science 28
, 2013
"... Abstract. This paper concerns the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models with normalized random measure priors. Making use of some recent posterior characterizations for the class of normalized random measures, we propose novel Markov ..."
Abstract

Cited by 17 (8 self)
 Add to MetaCart
(Show Context)
Abstract. This paper concerns the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models with normalized random measure priors. Making use of some recent posterior characterizations for the class of normalized random measures, we propose novel Markov chain Monte Carlo methods of both marginal type and conditional type. The proposed marginal samplers are generalizations of Neal’s wellregarded Algorithm 8 for Dirichlet process mixture models, whereas the conditional sampler is a variation of those recently introduced in the literature. For both the marginal and conditional methods, we consider as a running example a mixture model with an underlying normalized generalized Gamma process prior, and describe comparative simulation results demonstrating the efficacies of the proposed methods. Key words and phrases: Bayesian nonparametrics, hierarchical mixture model, completely random measure, normalized random measure, Dirichlet process, normalized generalized Gamma process, MCMC posterior sampling method, marginalized sampler, Algorithm 8, conditional sampler, slice sampling. 1.