Results 1  10
of
37
SmallBias Probability Spaces: Efficient Constructions and Applications
 SIAM J. Comput
, 1993
"... We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random variables is ..."
Abstract

Cited by 262 (14 self)
 Add to MetaCart
We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random variables is O(log n + log 1 ffl ). Thus, if ffl is polynomially small, then the size of the sample space is also polynomial. Random variables that are fflbiased can be used to construct "almost" kwise independent random variables where ffl is a function of k. These probability spaces have various applications: 1. Derandomization of algorithms: many randomized algorithms that require only k wise independence of their random bits (where k is bounded by O(log n)), can be derandomized by using fflbiased random variables. 2. Reducing the number of random bits required by certain randomized algorithms, e.g., verification of matrix multiplication. 3. Exhaustive testing of combinatorial circui...
Randomness is Linear in Space
 Journal of Computer and System Sciences
, 1993
"... We show that any randomized algorithm that runs in space S and time T and uses poly(S) random bits can be simulated using only O(S) random bits in space S and time T poly(S). A deterministic simulation in space S follows. Of independent interest is our main technical tool: a procedure which extracts ..."
Abstract

Cited by 233 (19 self)
 Add to MetaCart
We show that any randomized algorithm that runs in space S and time T and uses poly(S) random bits can be simulated using only O(S) random bits in space S and time T poly(S). A deterministic simulation in space S follows. Of independent interest is our main technical tool: a procedure which extracts randomness from a defective random source using a small additional number of truly random bits. 1
ChernoffHoeffding Bounds for Applications with Limited Independence
 SIAM J. Discrete Math
, 1993
"... ChernoffHoeffding bounds are fundamental tools used in bounding the tail probabilities of the sums of bounded and independent random variables. We present a simple technique which gives slightly better bounds than these, and which more importantly requires only limited independence among the rando ..."
Abstract

Cited by 103 (10 self)
 Add to MetaCart
ChernoffHoeffding bounds are fundamental tools used in bounding the tail probabilities of the sums of bounded and independent random variables. We present a simple technique which gives slightly better bounds than these, and which more importantly requires only limited independence among the random variables, thereby importing a variety of standard results to the case of limited independence for free. Additional methods are also presented, and the aggregate results are sharp and provide a better understanding of the proof techniques behind these bounds. They also yield improved bounds for various tail probability distributions and enable improved approximation algorithms for jobshop scheduling. The "limited independence" result implies that a reduced amount of randomness and weaker sources of randomness are sufficient for randomized algorithms whose analyses use the ChernoffHoeffding bounds, e.g., the analysis of randomized algorithms for random sampling and oblivious packet routi...
Dispersers, Deterministic Amplification, and Weak Random Sources.
, 1989
"... We use a certain type of expanding bipartite graphs, called disperser graphs, to design procedures for picking highly correlated samples from a finite set, with the property that the probability of hitting any sufficiently large subset is high. These procedures require a relatively small number of r ..."
Abstract

Cited by 94 (12 self)
 Add to MetaCart
We use a certain type of expanding bipartite graphs, called disperser graphs, to design procedures for picking highly correlated samples from a finite set, with the property that the probability of hitting any sufficiently large subset is high. These procedures require a relatively small number of random bits and are robust with respect to the quality of the random bits. Using these sampling procedures to sample random inputs of polynomial time probabilistic algorithms, we can simulate the performance of some probabilistic algorithms with less random bits or with low quality random bits. We obtain the following results: 1. The error probability of an RP or BPP algorithm that operates with a constant error bound and requires n random bits, can be made exponentially small (i.e. 2 \Gamman ), with only (3 + ffl)n random bits, as opposed to standard amplification techniques that require \Omega\Gamma n 2 ) random bits for the same task. This result is nearly optimal, since the informati...
On LinearTime Deterministic Algorithms for Optimization Problems in Fixed Dimension
, 1992
"... We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. We s ..."
Abstract

Cited by 92 (10 self)
 Add to MetaCart
We show that with recently developed derandomization techniques, one can convert Clarkson's randomized algorithm for linear programming in fixed dimension into a lineartime deterministic one. The constant of proportionality is d O(d) , which is better than for previously known such algorithms. We show that the algorithm works in a fairly general abstract setting, which allows us to solve various other problems (such as finding the maximum volume ellipsoid inscribed into the intersection of n halfspaces) in linear time.
Clique Partitions, Graph Compression and Speedingup Algorithms
 Journal of Computer and System Sciences
, 1991
"... We first consider the problem of partitioning the edges of a graph G into bipartite cliques such that the total order of the cliques is minimized, where the order of a clique is the number of vertices in it. It is shown that the problem is NPcomplete. We then prove the existence of a partition of s ..."
Abstract

Cited by 73 (3 self)
 Add to MetaCart
We first consider the problem of partitioning the edges of a graph G into bipartite cliques such that the total order of the cliques is minimized, where the order of a clique is the number of vertices in it. It is shown that the problem is NPcomplete. We then prove the existence of a partition of small total order in a sufficiently dense graph and devise an efficient algorithm to compute such a partition. It turns out that our algorithm exhibits a tradeoff between the total order of the partition and the running time. Next, we define the notion of a compression of a graph G and use the result on graph partitioning to efficiently compute an optimal compression for graphs of a given size. An interesting application of the graph compression result arises from the fact that several graph algorithms can be adapted to work with the compressed representation of the input graph, thereby improving the bound on their running times, particularly on dense graphs. This makes use of the tradeoff ...
Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions
 Algorithmica
, 1996
"... Small sample spaces with almost independent random variables are applied to design efficient sequential deterministic algorithms for two problems. The first algorithm, motivated by the attempt to design efficient algorithms for the All Pairs Shortest Path problem using fast matrix multiplication, so ..."
Abstract

Cited by 61 (5 self)
 Add to MetaCart
Small sample spaces with almost independent random variables are applied to design efficient sequential deterministic algorithms for two problems. The first algorithm, motivated by the attempt to design efficient algorithms for the All Pairs Shortest Path problem using fast matrix multiplication, solves the problem of computing witnesses for the Boolean product of two matrices. That is, if A and B are two n by n matrices, and C = AB is their Boolean product, the algorithm finds for every entry Cij = 1 a witness: an index k so that Aik = Bkj = 1. Its running time exceeds that of computing the product of two n by n matrices with small integer entries by a polylogarithmic factor. The second algorithm is a nearly linear time deterministic procedure for constructing a perfect hash function for a given nsubset of {1,..., m}.
A parallel algorithmic version of the local lemma
, 1991
"... The Lovász Local Lemma is a tool that enables one to show that certain events hold with positive, though very small probability. It often yields existence proofs of results without supplying any efficient way of solving the corresponding algorithmic problems. J. Beck has recently found a method for ..."
Abstract

Cited by 59 (10 self)
 Add to MetaCart
The Lovász Local Lemma is a tool that enables one to show that certain events hold with positive, though very small probability. It often yields existence proofs of results without supplying any efficient way of solving the corresponding algorithmic problems. J. Beck has recently found a method for converting some of these existence proofs into efficient algorithmic procedures, at the cost of loosing a little in the estimates. His method does not seem to be parallelizable. Here we modify his technique and achieve an algorithmic version that can be parallelized, thus obtaining deterministic NC 1 algorithms for several interesting algorithmic problems.
Randomized Distributed Edge Coloring via an Extension of the ChernoffHoeffding Bounds
 SIAM J. Comput
, 1997
"... . Certain types of routing, scheduling, and resourceallocation problems in a distributed setting can be modeled as edgecoloring problems. We present fast and simple randomized algorithms for edge coloring a graph in the synchronous distributed pointtopoint model of computation. Our algorithms co ..."
Abstract

Cited by 57 (9 self)
 Add to MetaCart
. Certain types of routing, scheduling, and resourceallocation problems in a distributed setting can be modeled as edgecoloring problems. We present fast and simple randomized algorithms for edge coloring a graph in the synchronous distributed pointtopoint model of computation. Our algorithms compute an edge coloring of a graph G with n nodes and maximum degree # with at most 1.6# +O(log 1+# n) colors with high probability (arbitrarily close to 1) for any fixed #>0; they run in polylogarithmic time. The upper bound on the number of colors improves upon the (2#  1)coloring achievable by a simple reduction to vertex coloring. To analyze the performance of our algorithms, we introduce new techniques for proving upper bounds on the tail probabilities of certain random variables. The Cherno#Hoe#ding bounds are fundamental tools that are used very frequently in estimating tail probabilities. However, they assume stochastic independence among certain random variables, which may n...
Removing Randomness in Parallel Computation Without a Processor Penalty
 Journal of Computer and System Sciences
, 1988
"... We develop some general techniques for converting randomized parallel algorithms into deterministic parallel algorithms without a blowup in the number of processors. One of the requirements for the application of these techniques is that the analysis of the randomized algorithm uses only pairwise in ..."
Abstract

Cited by 48 (1 self)
 Add to MetaCart
We develop some general techniques for converting randomized parallel algorithms into deterministic parallel algorithms without a blowup in the number of processors. One of the requirements for the application of these techniques is that the analysis of the randomized algorithm uses only pairwise independence. Our main new result is a parallel algorithm for coloring the vertices of an undirected graph using at most \Delta + 1 distinct colors in such a way that no two adjacent vertices receive the same color, where \Delta is the maximum degree of any vertex in the graph. The running time of the algorithm is O(log 3 n log log n) using a linear number of processors on a concurrent read, exclusive write (CREW) parallel random access machine (PRAM). 1 Our techniques also apply to several other problems, including the maximal independent set problem and the maximal matching problem. The application of the general technique to these last two problems is mostly of academic interest because...