Results 1 
3 of
3
Metalogical Frameworks
, 1992
"... In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the me ..."
Abstract

Cited by 57 (15 self)
 Add to MetaCart
In computer science we speak of implementing a logic; this is done in a programming language, such as Lisp, called here the implementation language. We also reason about the logic, as in understanding how to search for proofs; these arguments are expressed in the metalanguage and conducted in the metalogic of the object language being implemented. We also reason about the implementation itself, say to know it is correct; this is done in a programming logic. How do all these logics relate? This paper considers that question and more. We show that by taking the view that the metalogic is primary, these other parts are related in standard ways. The metalogic should be suitably rich so that the object logic can be presented as an abstract data type, and it must be suitably computational (or constructive) so that an instance of that type is an implementation. The data type abstractly encodes all that is relevant for metareasoning, i.e., not only the term constructing functions but also the...
Retrieving Library Functions By Unifying Types Modulo Linear Isomorphism
, 1992
"... An improved method to retrieve a library function via its Hindley/Milner type is described. Previous retrieval systems have identified types that are isomorphic in any Cartesian closed category (CCC), and have retrieved library functions of types that are either isomorphic to the query, or have ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
An improved method to retrieve a library function via its Hindley/Milner type is described. Previous retrieval systems have identified types that are isomorphic in any Cartesian closed category (CCC), and have retrieved library functions of types that are either isomorphic to the query, or have instances that are. Sometimes it is useful to instantiate the query too, which requires unification modulo isomorphism. Although unifiability modulo CCCisomorphism is undecidable, it is decidable modulo linear isomorphism, that is, isomorphism in any symmetric monoidal closed (SMC) category. We argue that the linear isomorphism should retrieve library functions almost as well as CCCisomorphism, and we report experiments with such retrieval from the Lazy ML library. When unification is used, the system retrieves too many functions, but sorting by the sizes of the unifiers tends to place the most relevant functions first. R'esum'e Ce papier pr'esente une nouvelle m'ethode pour la re...
Efficient Algorithms for Isomorphisms of Simple Types
"... The first order isomorphism problem is to decide whether two nonrecursive types using product and functiontype constructors, are isomorphic under the axioms of commutative and associative products, and currying and distributivity of functions over products. We show that this problem can be solved ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The first order isomorphism problem is to decide whether two nonrecursive types using product and functiontype constructors, are isomorphic under the axioms of commutative and associative products, and currying and distributivity of functions over products. We show that this problem can be solved in 2 is the input size. This result improves upon the space bounds of the best previous algorithm. We also describe an time algorithm for the linear isomorphism problem, which does not include the distributive axiom, whereby improving upon the time of the best previous algorithm for this problem.