Results 1  10
of
17
On a Homogeneous Algorithm for the Monotone Complementarity Problem
 Mathematical Programming
, 1995
"... We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility and compleme ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility and complementarity simultaneously or a certificate proving infeasibility. Moreover, if the MCP is polynomially solvable with an interior feasible starting point, then it can be polynomially solved without using or knowing such information at all. To our knowledge, this is the first interiorpoint and infeasiblestarting algorithm for solving the MCP that possesses these desired features. Preliminary computational results are presented. Key words: Monotone complementarity problem, homogeneous and selfdual, infeasiblestarting algorithm. Running head: A homogeneous algorithm for MCP. Department of Management, Odense University, Campusvej 55, DK5230 Odense M, Denmark, email: eda@busieco.ou.dk. y De...
A New SelfDual Embedding Method for Convex Programming
 Journal of Global Optimization
, 2001
"... In this paper we introduce a conic optimization formulation for inequalityconstrained convex programming, and propose a selfdual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint function ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
In this paper we introduce a conic optimization formulation for inequalityconstrained convex programming, and propose a selfdual embedding model for solving the resulting conic optimization problem. The primal and dual cones in this formulation are characterized by the original constraint functions and their corresponding conjugate functions respectively. Hence they are completely symmetric. This allows for a standard primaldual path following approach for solving the embedded problem. Moreover, there are two immediate logarithmic barrier functions for the primal and dual cones. We show that these two logarithmic barrier functions are conjugate to each other. The explicit form of the conjugate functions are in fact not required to be known in the algorithm. An advantage of the new approach is that there is no need to assume an initial feasible solution to start with. To guarantee the polynomiality of the pathfollowing procedure, we may apply the selfconcordant barrier theory of Nesterov and Nemirovski. For this purpose, as one application, we prove that the barrier functions constructed this way are indeed selfconcordant when the original constraint functions are convex and quadratic. Keywords: Convex Programming, Convex Cones, SelfDual Embedding, SelfConcordant Barrier Functions. # Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong. Research supported by Hong Kong RGC Earmarked Grants CUHK4181/00E and CUHK4233/01E. 1 1
A Long Step Barrier Method for Convex Quadratic Programming
 Algorithmica
, 1990
"... In this paper we propose a longstep logarithmic barrier function method for convex quadratic programming with linear equality constraints. After a reduction of the barrier parameter, a series of long steps along projected Newton directions are taken until the iterate is in the vicinity of the cent ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
In this paper we propose a longstep logarithmic barrier function method for convex quadratic programming with linear equality constraints. After a reduction of the barrier parameter, a series of long steps along projected Newton directions are taken until the iterate is in the vicinity of the center associated with the current value of the barrier parameter. We prove that the total number of iterations is O( p nL) or O(nL), dependent on how the barrier parameter is updated. Key Words: convex quadratic programming, interior point method, logarithmic barrier function, polynomial algorithm. 1 Introduction Karmarkar's [14] invention of the projective method for linear programming has given rise to active research in interior point algorithms. At this moment, the variants can roughly be categorized into four classes: projective, affine scaling, pathfollowing and potential reduction methods. Researchers have also extended interior point methods to other problems, including convex qu...
Tits. NewtonKKT interiorpoint methods for indefinite quadratic programming
 Comput. Optim. Appl
"... Two interiorpoint algorithms are proposed and analyzed, for the (local) solution of (possibly) indefinite quadratic programming problems. They are of the NewtonKKT variety in that (much like in the case of primaldual algorithms for linear programming) search directions for the “primal ” variables ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
Two interiorpoint algorithms are proposed and analyzed, for the (local) solution of (possibly) indefinite quadratic programming problems. They are of the NewtonKKT variety in that (much like in the case of primaldual algorithms for linear programming) search directions for the “primal ” variables and the KarushKuhnTucker (KKT) multiplier estimates are components of the Newton (or quasiNewton)
A Short Survey on Ten Years Interior Point Methods
, 1995
"... The introduction of Karmarkar's polynomial algorithm for linear programming (LP) in 1984 has influenced wide areas in the field of optimization. While in 80s emphasis was on developing and implementing efficient variants of interior point methods for LP, the nineties have shown applicability to c ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The introduction of Karmarkar's polynomial algorithm for linear programming (LP) in 1984 has influenced wide areas in the field of optimization. While in 80s emphasis was on developing and implementing efficient variants of interior point methods for LP, the nineties have shown applicability to certain structured nonlinear programming and combinatorial problems. We will give a historical account of the developments and outline the major contributions to the field in the last decade. An important class of problems to which interior point methods are applicable is semidefinite optimization, which has recently gained much attention. It has a lot of applications in various fields (like control and system theory, combinatorial optimization, algebra, statistics, structural design) and can be efficiently solved with interior point methods.
A Polynomial Method of Weighted Centers for Convex Quadratic Programming
 Journal of Information & Optimization Sciences
, 1991
"... A generalization of the weighted central pathfollowing method for convex quadratic programming is presented. This is done by uniting and modifying the main ideas of the weighted central pathfollowing method for linear programming and the interior point methods for convex quadratic programming. B ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
A generalization of the weighted central pathfollowing method for convex quadratic programming is presented. This is done by uniting and modifying the main ideas of the weighted central pathfollowing method for linear programming and the interior point methods for convex quadratic programming. By means of the linear approximation of the weighted logarithmic barrier function and weighted inscribed ellipsoids, `weighted' trajectories are defined. Each strictly feasible primal dual point pair define such a weighted trajectory. The algorithm can start in any strictly feasible primaldual point pair that defines a weighted trajectory, which is followed through the algorithm. This algorithm has the nice feature, that it is not necessary to start the algorithm close to the central path and so additional transformations are not needed. In return, the theoretical complexity of our algorithm is dependent on the position of the starting point. Polynomiality is proved under the usual mild cond...
Sample Paper for the amsmath Package File name: testmath.tex American Mathematical Society
, 1996
"... Version 1.02 1 Introduction This paper contains examples of various features from AMSLATEX. 2 Enumeration of Hamiltonian paths in a graph Let A = (aij) be the adjacency matrix of graph G. The corresponding Kirchhoff matrix K = (kij) is obtained from A by replacing in \Gamma A each diagonal entry by ..."
Abstract
 Add to MetaCart
Version 1.02 1 Introduction This paper contains examples of various features from AMSLATEX. 2 Enumeration of Hamiltonian paths in a graph Let A = (aij) be the adjacency matrix of graph G. The corresponding Kirchhoff matrix K = (kij) is obtained from A by replacing in \Gamma A each diagonal entry by the degree of its corresponding vertex; i.e., the ith diagonal entry is identified with the degree of the ith vertex. It is well known that
BMC Bioinformatics BioMed Central Methodology article
, 2006
"... Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems ..."
Abstract
 Add to MetaCart
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems