Results 1 
3 of
3
Predicative Recursion and Computational Complexity
, 1992
"... The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct r ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct reference to polynomials, time, or even computation. Complexity classes characterized in this way include polynomial time, the functional polytime hierarchy, the logspace decidable problems, and NC. After developing these "resource free" definitions, we apply them to redeveloping the feasible logical system of Cook and Urquhart, and show how this firstorder system relates to the secondorder system of Leivant. The connection is an interesting one since the systems were defined independently and have what appear to be very different rules for the principle of induction. Furthermore it is interesting to see, albeit in a very specific context, how to retract a second order statement, ("inducti...
Computational Complexity and Induction for Partial Computable Functions in Type Theory
 In Preprint
, 1999
"... An adequate theory of partial computable functions should provide a basis for defining computational complexity measures and should justify the principle of computational induction for reasoning about programs on the basis of their recursive calls. There is no practical account of these notions in ..."
Abstract

Cited by 11 (7 self)
 Add to MetaCart
An adequate theory of partial computable functions should provide a basis for defining computational complexity measures and should justify the principle of computational induction for reasoning about programs on the basis of their recursive calls. There is no practical account of these notions in type theory, and consequently such concepts are not available in applications of type theory where they are greatly needed. It is also not clear how to provide a practical and adequate account in programming logics based on set theory. This paper provides a practical theory supporting all these concepts in the setting of constructive type theories. We first introduce an extensional theory of partial computable functions in type theory. We then add support for intensional reasoning about programs by explicitly reflecting the essential properties of the underlying computation system. We use the resulting intensional reasoning tools to justify computational induction and to define computationa...