Results 1 
3 of
3
Setoids in Type Theory
, 2000
"... Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we argue that a commonly advocated approach to partial setoids is unsuitable, and more generally that total setoids seem better suited for formalising mathematics. 1
A TwoLevel Approach towards Lean ProofChecking
, 1996
"... We present a simple and effective methodology for equational reasoning in proof checkers. The method is based on a twolevel approach distinguishing between syntax and semantics of mathematical theories. The method is very general and can be carried out in any type system with inductive and oracle t ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
We present a simple and effective methodology for equational reasoning in proof checkers. The method is based on a twolevel approach distinguishing between syntax and semantics of mathematical theories. The method is very general and can be carried out in any type system with inductive and oracle types. The potential of our twolevel approach is illustrated by some examples developed in Lego.
DOI: 10.1017/S0956796802004501 Printed in the United Kingdom Setoids in type theory
"... Formalising mathematics in dependent type theory often requires to represent sets as setoids, i.e. types with an explicit equality relation. This paper surveys some possible definitions of setoids and assesses their suitability as a basis for developing mathematics. According to whether the equality ..."
Abstract
 Add to MetaCart
Formalising mathematics in dependent type theory often requires to represent sets as setoids, i.e. types with an explicit equality relation. This paper surveys some possible definitions of setoids and assesses their suitability as a basis for developing mathematics. According to whether the equality relation is required to be reflexive or not we have total or partial setoid, respectively. There is only one definition of total setoid, but four different definitions of partial setoid, depending on four different notions of setoid function. We prove that one approach to partial setoids in unsuitable, and that the other approaches can be divided in two classes of equivalence. One class contains definitions of partial setoids that are equivalent to total setoids; the other class contains an inherently different definition, that has been useful in the modeling of type systems. We also provide some elements of discussion on the merits of each approach from the viewpoint of formalizing mathematics. In particular, we exhibit a difficulty with the common definition of subsetoids in the partial setoid approach. 1