Results 1  10
of
17
On the impact of combinatorial structure on congestion games
 in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
"... We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time ..."
Abstract

Cited by 61 (12 self)
 Add to MetaCart
(Show Context)
We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time. We show, if the strategy space of each player consists of the bases of a matroid over the set of resources, then the lengths of all best response sequences are polynomially bounded in the number of players and resources. We can also prove that this result is tight, that is, the matroid property is a necessary and sufficient condition on the players ’ strategy spaces for guaranteeing polynomial time convergence to a Nash equilibrium. In addition, we present an approach that enables us to devise hardness proofs for various kinds of combinatorial games, including first results about the hardness of market sharing games and congestion games for overlay network design. Our approach also yields a short proof for the PLScompleteness of network congestion games. 1
Pure Nash equilibria in playerspecific and weighted congestion games
 IN PROC. OF THE 2ND INT. WORKSHOP ON INTERNET AND NETWORK ECONOMICS (WINE
, 2006
"... Additionally, our analysis of playerspecific matroid congestion games yields a polynomial time algorithm for computing pure equilibria. We also address questions related to the convergence time of such games. For playerspecific matroid congestion games, in which the best response dynamics may cycl ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
Additionally, our analysis of playerspecific matroid congestion games yields a polynomial time algorithm for computing pure equilibria. We also address questions related to the convergence time of such games. For playerspecific matroid congestion games, in which the best response dynamics may cycle, we show that from every state there exists a short sequences of better responses to an equilibrium. For weighted matroid congestion games, we present a superpolynomial lower bound on the convergence time of the best response dynamics showing that players do not even converge in pseudopolynomial time.
Computational Complexity Of Neural Networks: A Survey
, 1994
"... . We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. Our main emphasis is on the computational power of various acyclic and cyclic network models, but we also discuss briefly the complexity aspects of synthesizing networks fr ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
. We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. Our main emphasis is on the computational power of various acyclic and cyclic network models, but we also discuss briefly the complexity aspects of synthesizing networks from examples of their behavior. CR Classification: F.1.1 [Computation by Abstract Devices]: Models of Computationneural networks, circuits; F.1.3 [Computation by Abstract Devices ]: Complexity Classescomplexity hierarchies Key words: Neural networks, computational complexity, threshold circuits, associative memory 1. Introduction The currently again very active field of computation by "neural" networks has opened up a wealth of fascinating research topics in the computational complexity analysis of the models considered. While much of the general appeal of the field stems not so much from new computational possibilities, but from the possibility of "learning", or synthesizing networks...
Computing with Truly Asynchronous Threshold Logic Networks
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present simulation mechanisms by which any network of threshold logic units with either symmetric or asymmetric interunit connections (i.e., a symmetric or asymmetric "Hopfield net") can be simulated on a network of the same type, but without any a priori constraints on the order of upd ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
We present simulation mechanisms by which any network of threshold logic units with either symmetric or asymmetric interunit connections (i.e., a symmetric or asymmetric "Hopfield net") can be simulated on a network of the same type, but without any a priori constraints on the order of updates of the units. Together with earlier constructions, the results show that the truly asynchronous network model is computationally equivalent to the seemingly more powerful models with either ordered sequential or fully parallel updates.
Complexity Issues in Discrete Hopfield Networks
, 1994
"... We survey some aspects of the computational complexity theory of discretetime and discretestate Hopfield networks. The emphasis is on topics that are not adequately covered by the existing survey literature, most significantly: 1. the known upper and lower bounds for the convergence times of Hopfi ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
We survey some aspects of the computational complexity theory of discretetime and discretestate Hopfield networks. The emphasis is on topics that are not adequately covered by the existing survey literature, most significantly: 1. the known upper and lower bounds for the convergence times of Hopfield nets (here we consider mainly worstcase results); 2. the power of Hopfield nets as general computing devices (as opposed to their applications to associative memory and optimization); 3. the complexity of the synthesis ("learning") and analysis problems related to Hopfield nets as associative memories. Draft chapter for the forthcoming book The Computational and Learning Complexity of Neural Networks: Advanced Topics (ed. Ian Parberry).
Neural Networks and Complexity Theory
 In Proc. 17th International Symposium on Mathematical Foundations of Computer Science
, 1992
"... . We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. 1 Introduction The recently revived field of computation by "neural" networks provides the complexity theorist with a wealth of fascinating research topics. Whi ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
(Show Context)
. We survey some of the central results in the complexity theory of discrete neural networks, with pointers to the literature. 1 Introduction The recently revived field of computation by "neural" networks provides the complexity theorist with a wealth of fascinating research topics. While much of the general appeal of the field stems not so much from new computational possibilities, but from the possibility of "learning", or synthesizing networks directly from examples of their desired inputoutput behavior, it is nevertheless important to pay attention also to the complexity issues: firstly, what kinds of functions are computable by networks of a given type and size, and secondly, what is the complexity of the synthesis problems considered. In fact, inattention to these issues was a significant factor in the demise of the first stage of neural networks research in the late 60's, under the criticism of Minsky and Papert [51]. The intent of this paper is to survey some of the centra...
GeneralPurpose Computation with Neural Networks: A Survey of Complexity Theoretic Results
, 2003
"... We survey and summarize the literature on the computational aspects of neural network models by presenting a detailed taxonomy of the various models according to their complexity theoretic characteristics. The criteria of classification include the architecture of the network (feedforward versus rec ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We survey and summarize the literature on the computational aspects of neural network models by presenting a detailed taxonomy of the various models according to their complexity theoretic characteristics. The criteria of classification include the architecture of the network (feedforward versus recurrent), time model (discrete versus continuous), state type (binary versus analog), weight constraints (symmetric versus asymmetric), network size (finite nets versus infinite families), and computation type (deterministic versus probabilistic), among others. The underlying results concerning the computational power and complexity issues of perceptron, radial basis function, winnertakeall, and spiking neural networks are briefly surveyed, with pointers to the relevant literature. In our survey, we focus mainly on the digital computation whose inputs and outputs are binary in nature, although their values are quite often encoded as analog neuron states. We omit the important learning issues.
An Overview Of The Computational Power Of Recurrent Neural Networks
 Proceedings of the 9th Finnish AI Conference STeP 2000{Millennium of AI, Espoo, Finland (Vol. 3: &quot;AI of Tomorrow&quot;: Symposium on Theory, Finnish AI Society
, 2000
"... INTRODUCTION The two main streams of neural networks research consider neural networks either as a powerful family of nonlinear statistical models, to be used in for example pattern recognition applications [6], or as formal models to help develop a computational understanding of the brain [10]. His ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
(Show Context)
INTRODUCTION The two main streams of neural networks research consider neural networks either as a powerful family of nonlinear statistical models, to be used in for example pattern recognition applications [6], or as formal models to help develop a computational understanding of the brain [10]. Historically, the brain theory interest was primary [32], but with the advances in computer technology, the application potential of the statistical modeling techniques has shifted the balance. 1 The study of neural networks as general computational devices does not strictly follow this division of interests: rather, it provides a general framework outlining the limitations and possibilities aecting both research domains. The prime historic example here is obviously Minsky's and Papert's 1969 study of the computational limitations of singlelayer perceptrons [34], which was a major inuence in turning away interest from neural network learning to symbolic AI techniques for more
The Computational Power of Discrete Hopfield Nets with Hidden Units
 Neural Computation
, 1996
"... We prove that polynomial size discrete Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial spacebounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks wi ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
We prove that polynomial size discrete Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial spacebounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks with polynomially bounded interconnection weights compute exactly the class of functions P/poly, i.e., the class computed by polynomial timebounded nonuniform Turing machines.
On the Computational Power of Discrete Hopfield Nets
 In: Proc. 20th International Colloquium on Automata, Languages, and Programming
, 1993
"... . We prove that polynomial size discrete synchronous Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial spacebounded nonuniform Turing machines. As a corollary to the construction, we observe also th ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
. We prove that polynomial size discrete synchronous Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial spacebounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks with polynomially bounded interconnection weights compute exactly the class of functions P/poly. 1 Background Recurrent, or cyclic, neural networks are an intriguing model of massively parallel computation. In the recent surge of research in neural computation, such networks have been considered mostly from the point of view of two types of applications: pattern classification and associative memory (e.g. [16, 18, 21, 24]), and combinatorial optimization (e.g. [1, 7, 20]). Nevertheless, recurrent networks are capable also of more general types of computation, and issues of what exactly such networks can compute, and how they should be programmed, are becoming increasingly topica...