Results 1  10
of
118
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1012 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Simulating Normalized Constants: From Importance Sampling to Bridge Sampling to Path Sampling
 Statistical Science, 13, 163–185. COMPARISON OF METHODS FOR COMPUTING BAYES FACTORS 435
, 1998
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 148 (4 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Bayesian Model Assessment In Factor Analysis
, 2004
"... Factor analysis has been one of the most powerful and flexible tools for assessment of multivariate dependence and codependence. Loosely speaking, it could be argued that the origin of its success rests in its very exploratory nature, where various kinds of datarelationships amongst the variable ..."
Abstract

Cited by 59 (9 self)
 Add to MetaCart
Factor analysis has been one of the most powerful and flexible tools for assessment of multivariate dependence and codependence. Loosely speaking, it could be argued that the origin of its success rests in its very exploratory nature, where various kinds of datarelationships amongst the variables at study can be iteratively verified and/or refuted. Bayesian inference in factor analytic models has received renewed attention in recent years, partly due to computational advances but also partly to applied focuses generating factor structures as exemplified by recent work in financial time series modeling. The focus of our current work is on exploring questions of uncertainty about the number of latent factors in a multivariate factor model, combined with methodological and computational issues of model specification and model fitting. We explore reversible jump MCMC methods that build on sets of parallel Gibbs samplingbased analyses to generate suitable empirical proposal distributions and that address the challenging problem of finding e#cient proposals in highdimensional models. Alternative MCMC methods based on bridge sampling are discussed, and these fully Bayesian MCMC approaches are compared with a collection of popular model selection methods in empirical studies.
An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants
 Biometrika
, 2006
"... Maximum likelihood parameter estimation and sampling from Bayesian posterior distributions are problematic when the probability density for the parameter of interest involves an intractable normalising constant which is also a function of that parameter. In this paper, an auxiliary variable method i ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
Maximum likelihood parameter estimation and sampling from Bayesian posterior distributions are problematic when the probability density for the parameter of interest involves an intractable normalising constant which is also a function of that parameter. In this paper, an auxiliary variable method is presented which requires only that independent samples can be drawn from the unnormalised density at any particular parameter value. The proposal distribution is constructed so that the normalising constant cancels from the Metropolis–Hastings ratio. The method is illustrated by producing posterior samples for parameters of the Ising model given a particular lattice realisation.
Inference in Curved Exponential Family Models for Networks
 Journal of Computational and Graphical Statistics
, 2006
"... Network data arise in a wide variety of applications. Although descriptive statistics for networks abound in the literature, the science of fitting statistical models to complex network data is still in its infancy. The models considered in this article are based on exponential families; therefore, ..."
Abstract

Cited by 47 (9 self)
 Add to MetaCart
Network data arise in a wide variety of applications. Although descriptive statistics for networks abound in the literature, the science of fitting statistical models to complex network data is still in its infancy. The models considered in this article are based on exponential families; therefore, we refer to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate, maximum likelihood estimation of parameters in these models is very difficult. In this article, we first review the method of maximum likelihood estimation using Markov chain Monte Carlo in the context of fitting linear ERGMs. We then extend this methodology to the situation where the model comes from a curved exponential family. The curved exponential family methodology is applied to new specifications of ERGMs, proposed by Snijders et al. (2004), having nonlinear parameters to represent structural properties of networks such as transitivity and heterogeneity of degrees. We review the difficult topic of implementing likelihood ratio tests for these models, then apply all these modelfitting and testing techniques to the estimation of linear and nonlinear parameters for a collaboration network between partners in a New England law firm.
Estimating Bayes Factors via Posterior Simulation with the LaplaceMetropolis Estimator
 Journal of the American Statistical Association
, 1994
"... The key quantity needed for Bayesian hypothesis testing and model selection is the marginal likelihood for a model, also known as the integrated likelihood, or the marginal probability of the data. In this paper we describe a way to use posterior simulation output to estimate marginal likelihoods. W ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
The key quantity needed for Bayesian hypothesis testing and model selection is the marginal likelihood for a model, also known as the integrated likelihood, or the marginal probability of the data. In this paper we describe a way to use posterior simulation output to estimate marginal likelihoods. We describe the basic LaplaceMetropolis estimator for models without random effects. For models with random effects the compound LaplaceMetropolis estimator is introduced. This estimator is applied to data from the World Fertility Survey and shown to give accurate results. Batching of simulation output is used to assess the uncertainty involved in using the compound LaplaceMetropolis estimator. The method allows us to test for the effects of independent variables in a random effects model, and also to test for the presence of the random effects. KEY WORDS: LaplaceMetropolis estimator; Random effects models; Marginal likelihoods; Posterior simulation; World Fertility Survey. 1 Introduction...
EQUIENERGY SAMPLER WITH APPLICATIONS IN STATISTICAL INFERENCE AND STATISTICAL MECHANICS
, 2006
"... We introduce a new sampling algorithm, the equienergy sampler, for efficient statistical sampling and estimation. Complementary to the widely used temperaturedomain methods, the equienergy sampler, utilizing the temperature–energy duality, targets the energy directly. The focus on the energy func ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
We introduce a new sampling algorithm, the equienergy sampler, for efficient statistical sampling and estimation. Complementary to the widely used temperaturedomain methods, the equienergy sampler, utilizing the temperature–energy duality, targets the energy directly. The focus on the energy function not only facilitates efficient sampling, but also provides a powerful means for statistical estimation, for example, the calculation of the density of states and microcanonical averages in statistical mechanics. The equienergy sampler is applied to a variety of problems, including exponential regression in statistics, motif sampling in computational biology and protein folding in biophysics.
Blocking Gibbs Sampling for Linkage Analysis in Large Pedigrees with Many Loops
 AMERICAN JOURNAL OF HUMAN GENETICS
, 1996
"... We will apply the method of blocking Gibbs sampling to a problem of great importance and complexity  linkage analysis. Blocking Gibbs combines exact local computations with Gibbs sampling in a way that complements the strengths of both. The method is able to handle problems with very high complexi ..."
Abstract

Cited by 24 (2 self)
 Add to MetaCart
We will apply the method of blocking Gibbs sampling to a problem of great importance and complexity  linkage analysis. Blocking Gibbs combines exact local computations with Gibbs sampling in a way that complements the strengths of both. The method is able to handle problems with very high complexity such as linkage analysis in large pedigrees with many loops; a task that no other known method is able to handle. New developments of the method are outlined, and it is applied to a highly complex linkage problem.
Hypothesis testing and model selection via posterior simulation
 In Markov Chain Monte Carlo in Practice. Chapman and
, 1996
"... ..."