Results 1 
3 of
3
Computational Foundations of Basic Recursive Function Theory
 Theoretical Computer Science
, 1988
"... The theory of computability, or basic recursive function theory as it is often called, is usually motivated and developed using Church's Thesis. Here we show that there is an alternative computability theory in which some of the basic results on unsolvability become more absolute, results on complet ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
The theory of computability, or basic recursive function theory as it is often called, is usually motivated and developed using Church's Thesis. Here we show that there is an alternative computability theory in which some of the basic results on unsolvability become more absolute, results on completeness become simpler, and many of the central concepts become more abstract. In this approach computations are viewed as mathematical objects, and the major theorems in recursion theory may be classified according to which axioms about computation are needed to prove them. The theory is a typed theory of functions over the natural numbers, and there are unsolvable problems in this setting independent of the existence of indexings. The unsolvability results are interpreted to show that the partial function concept, so important in computer science, serves to distinguish between classical and constructive type theories (in a different way than does the decidability concept as expressed in the ...
Completing Partial Combinatory Algebras with Unique HeadNormal Forms
, 1996
"... In this note, we prove that having unique headnormal forms is a sufficient condition on partial combinatory algebras to be completable. As application, we show that the pca of strongly normalizing CLterms as well as the pca of natural numbers with partial recursive function application can be exte ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In this note, we prove that having unique headnormal forms is a sufficient condition on partial combinatory algebras to be completable. As application, we show that the pca of strongly normalizing CLterms as well as the pca of natural numbers with partial recursive function application can be extended to total combinatory algebras. 1.
Extending Partial Combinatory Algebras
, 1999
"... Introduction Consider a structure A = hA; s; k; \Deltai, where A is some set containing the distinguished elements s; k, equipped with a binary operation \Delta on A, called application, which may be partial. Notation 1.1. 1 Instead of a \Delta b we write ab; and in writing applicative expression ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Introduction Consider a structure A = hA; s; k; \Deltai, where A is some set containing the distinguished elements s; k, equipped with a binary operation \Delta on A, called application, which may be partial. Notation 1.1. 1 Instead of a \Delta b we write ab; and in writing applicative expressions, the usual convention of association to the left is employed. So for elements a; b; c 2 A, the expression aba(ac) is short for ((a \Delta b) \Delta a) \Delta (a \Delta c). 2 ab # will mean that ab is defined; ab " means that ab is not defined. Obviously, an applicative expression