Results 1  10
of
38
The algebra of cubes
, 2002
"... This is the first of two papers whose main purpose is to prove a generalization of the SeifertVan Kampen theorem on the fundamental group of a union of spaces. This generalisation (Theorem C of [8]) will give information in all dimensions and will include as special cases not only the above theorem ..."
Abstract

Cited by 124 (41 self)
 Add to MetaCart
This is the first of two papers whose main purpose is to prove a generalization of the SeifertVan Kampen theorem on the fundamental group of a union of spaces. This generalisation (Theorem C of [8]) will give information in all dimensions and will include as special cases not only the above theorem (without the usual assumptions of pathconnectedness) but also
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
Tensor products and homotopies for ωgroupoids and crossed complexes
, 2007
"... Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed comp ..."
Abstract

Cited by 43 (21 self)
 Add to MetaCart
Crossed complexes have longstanding uses, explicit and implicit, in homotopy theory and the cohomology of groups. It is here shown that the category of crossed complexes over groupoids has a symmetric monoidal closed structure in which the internal Hom functor is built from morphisms of crossed complexes, nonabelian chain homotopies between them and similar higher homotopies. The tensor product involves nonabelian constructions related to the commutator calculus and the homotopy addition lemma. This monoidal closed structure is derived from that on the equivalent category of ωgroupoids where the underlying cubical structure gives geometrically natural definitions of tensor products and homotopies.
Categories and groupoids
, 1971
"... In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
In 1968, when this book was written, categories had been around for 20 years and groupoids for twice as long. Category theory had by then become widely accepted as an essential tool in many parts of mathematics and a number of books on the subject had appeared, or were about to appear (e.g. [13, 22, 37, 58, 65] 1). By contrast, the use of groupoids was confined to a small number of pioneering articles, notably by Ehresmann [12] and Mackey [57], which were largely ignored by the mathematical community. Indeed groupoids were generally considered at that time not to be a subject for serious study. It was argued by several wellknown mathematicians that group theory sufficed for all situations where groupoids might be used, since a connected groupoid could be reduced to a group and a set. Curiously, this argument, which makes no appeal to elegance, was not applied to vector spaces: it was well known that the analogous reduction in this case is not canonical, and so is not available, when there is extra structure, even such simple structure as an endomorphism. Recently, Corfield in [41] has discussed methodological issues in mathematics with this topic, the resistance to the notion of groupoids, as a prime example. My book was intended chiefly as an attempt to reverse this general assessment of the time by presenting applications of groupoids to group theory
Wellfounded Trees and Dependent Polynomial Functors
 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class ..."
Abstract

Cited by 26 (4 self)
 Add to MetaCart
We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed categories.
Developing Theories of Types and Computability via Realizability
, 2000
"... We investigate the development of theories of types and computability via realizability. ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
We investigate the development of theories of types and computability via realizability.
Pasting Schemes for the Monoidal Biclosed Structure on
, 1995
"... Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on !categories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on !groupoids. Immediate consequences are a gen ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on !categories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on !groupoids. Immediate consequences are a general and uniform definition of higher dimensional lax natural transformations, and a nice and transparent description of the corresponding internal homs. Further consequences will be in the development of a theory for weak ncategories, since both tensor products and lax structures are crucial in this. Contents 1 Introduction 3 2 Cubes and cubical sets 5 2.1 Cubes combinatorially : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 A model category for cubes : : : : : : : : : : : : : : : : : : : : : 6 2.3 Generating the model category for cubes : : : : : : : : : : : : : : 7 2.4 Cubical sets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.5 Duality : : : : : : : : : : : : : ...
Equivalences among Various Logical Frameworks of Partial Algebras
 Computer Science Logic. 9th Workshop, CSL'95. Paderborn
, 1996
"... We examine a variety of liberal logical frameworks of partial algebras. Therefore we use simple, conjunctive and weak embeddings of institutions which preserve model categories and may map sentences to sentences, finite sets of sentences, or theory extensions using unique existential quantifiers, re ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
We examine a variety of liberal logical frameworks of partial algebras. Therefore we use simple, conjunctive and weak embeddings of institutions which preserve model categories and may map sentences to sentences, finite sets of sentences, or theory extensions using unique existential quantifiers, respectively. They faithfully represent theories, model categories, theory morphisms, colimit of theories, reducts etc. Moreover, along simple and conjunctive embeddings, theorem provers can be reused in a way that soundness and completeness is preserved. Our main result states the equivalence of all the logical frameworks with respect to weak embeddability. This gives us compilers between all frameworks. Thus it is a chance to unify the different branches of specification using liberal partial logics. This is important for reaching the goal of formal interoperability of different specification languages for software development. With formal interoperability, a specification can contain part...
Higher fundamental functors for simplicial sets, Cahiers Topologie Géom
 Diff. Catég
"... Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Abstract. An intrinsic, combinatorial homotopy theory has been developed in [G3] for simplicial complexes; these form the cartesian closed subcategory of simple presheaves in!Smp, the topos of symmetric simplicial sets, or presheaves on the category!å of finite, positive cardinals. We show here how this homotopy theory can be extended to the topos itself,!Smp. As a crucial advantage, the fundamental groupoid Π1:!Smp = Gpd is left adjoint to a natural functor M1: Gpd =!Smp, the symmetric nerve of a groupoid, and preserves all colimits – a strong van Kampen property. Similar results hold in all higher dimensions. Analogously, a notion of (nonreversible) directed homotopy can be developed in the ordinary simplicial topos Smp, with applications to image analysis as in [G3]. We have now a homotopy ncategory functor ↑Πn: Smp = nCat, left adjoint to a nerve Nn = nCat(↑Πn(∆[n]), –). This construction can be applied to various presheaf categories; the basic requirements seem to be: finite products of representables are finitely presentable and there is a representable 'standard interval'.
On the Role of Category Theory in the Area of Algebraic Specifications
 In LNCS , Proc. WADT11
, 1996
"... . The paper summarizes the main concepts and paradigms of category theory and explores some of their applications to the area of algebraic specifications. In detail we discuss different approaches to an abstract theory of specification logics. Further we present a uniform framework for developing pa ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
. The paper summarizes the main concepts and paradigms of category theory and explores some of their applications to the area of algebraic specifications. In detail we discuss different approaches to an abstract theory of specification logics. Further we present a uniform framework for developing particular specification logics. We make use of `classifying categories', to present categories of algebras as functor categories and to obtain necessary basic results for particular specification logics in a uniform manner. The specification logics considered are: equational logic for total algebras, conditional equational logic for partial algebras, and rewrite logic for concurrent systems. 1 Category Theory and Applications in Computer Science Category theory has been developed as a mathematical theory over 50 years and has influenced not only almost all branches of structural mathematics but also the development of several areas of computer science. It is the aim of this paper to review t...