Results 1 
8 of
8
Meridian: A Lightweight Network Location Service without Virtual Coordinates
 In SIGCOMM
, 2005
"... This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for diss ..."
Abstract

Cited by 139 (7 self)
 Add to MetaCart
This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for dissemination. We show how this framework can be used to address three commonly encountered problems, namely, closest node discovery, central leader election, and locating nodes that satisfy target latency constraints in largescale distributed systems without having to compute absolute coordinates. We show analytically that the framework is scalable with logarithmic convergence when Internet latencies are modeled as a growthconstrained metric, a lowdimensional Euclidean metric, or a metric of low doubling dimension. Large scale simulations, based on latency measurements from 6.25 million nodepairs as well as an implementation deployed on PlanetLab show that the framework is accurate and effective.
Distance Estimation and Object Location via Rings of Neighbors
 In 24 th Annual ACM Symposium on Principles of Distributed Computing (PODC
, 2005
"... We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Fo ..."
Abstract

Cited by 64 (4 self)
 Add to MetaCart
We consider four problems on distance estimation and object location which share the common flavor of capturing global information via informative node labels: lowstretch routing schemes [47], distance labeling [24], searchable small worlds [30], and triangulationbased distance estimation [33]. Focusing on metrics of low doubling dimension, we approach these problems with a common technique called rings of neighbors, which refers to a sparse distributed data structure that underlies all our constructions. Apart from improving the previously known bounds for these problems, our contributions include extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently become a useful algorithmic concept in the theoretical computer science literature. 1
Fast Deterministic Distributed Maximal Independent Set Computation on GrowthBounded Graphs
 IN PROC. 19TH CONFERENCE ON DISTRIBUTED COMPUTING (DISC
, 2005
"... The distributed complexity of computing a maximal independent set in a graph is of both practical and theoretical importance. While there exists an elegant O(log n) time randomized algorithm for general graphs [20], no deterministic polylogarithmic algorithm is known. In this paper, we study the p ..."
Abstract

Cited by 40 (12 self)
 Add to MetaCart
The distributed complexity of computing a maximal independent set in a graph is of both practical and theoretical importance. While there exists an elegant O(log n) time randomized algorithm for general graphs [20], no deterministic polylogarithmic algorithm is known. In this paper, we study the problem in graphs with bounded growth, an important family of graphs which includes the wellknown unit disk graph and many variants thereof. Particularly, we propose a deterministic algorithm that computes a maximal independent set in time O(log \Delta * log*n) in graphs with bounded growth, where n and \Delta denote the number of nodes and the maximal degree in G, respectively.
Distributed Approaches to Triangulation and Embedding
 In Proceedings 16th ACMSIAM Symposium on Discrete Algorithms (SODA
, 2005
"... A number of recent papers in the networking community study the distance matrix defined by the nodetonode latencies in the Internet and, in particular, provide a number of quite successful distributed approaches that embed this distance into a lowdimensional Euclidean space. In such algorithms it ..."
Abstract

Cited by 30 (6 self)
 Add to MetaCart
A number of recent papers in the networking community study the distance matrix defined by the nodetonode latencies in the Internet and, in particular, provide a number of quite successful distributed approaches that embed this distance into a lowdimensional Euclidean space. In such algorithms it is feasible to measure distances among only a linear or nearlinear number of node pairs; the rest of the distances are simply not available. Moreover, for applications it is desirable to spread the load evenly among the participating nodes. Indeed, several recent studies use this ’fully distributed ’ approach and achieve, empirically, a low distortion for all but a small fraction of node pairs. This is concurrent with the large body of theoretical work on metric embeddings, but there is a fundamental distinction: in the theoretical approaches to metric embeddings, full and centralized access to the distance matrix is assumed and heavily used. In this paper we present the first fully distributed embedding algorithm with provable distortion guarantees for doubling metrics (which have been proposed as a reasonable abstraction of Internet latencies), thus providing some insight into the empirical success of the recent Vivaldi algorithm [7]. The main ingredient of our embedding algorithm is an improved fully distributed algorithm for a more basic problem of triangulation, where the triangle inequality is used to infer the distances that have not been measured; this problem received a considerable attention in the networking community, and has also been studied theoretically in [19]. We use our techniques to extend ɛrelaxed embeddings and triangulations to infinite metrics and arbitrary measures, and to improve on the approximate distance labeling scheme of Talwar [36]. 1
Compact Routing on Euclidian Metrics
, 2004
"... We consider the problem of designing a compact communication network that supports e#cient routing in an Euclidean plane. Our network design and routing scheme achieves 1+# stretch, logarithmic diameter, and constant out degree. This improves upon the best known result so far that requires a logari ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
We consider the problem of designing a compact communication network that supports e#cient routing in an Euclidean plane. Our network design and routing scheme achieves 1+# stretch, logarithmic diameter, and constant out degree. This improves upon the best known result so far that requires a logarithmic outdegree. Furthermore, our scheme is asymptotically optimal in Euclidean metrics whose diameter is polynomial.
Towards Fast Decentralized Construction of LocalityAware Overlay Networks
 In 26th Annual ACM SIGACTSIGOPS Symp. on Principles Of Distributed Computing (PODC
, 2007
"... We consider a large overlay network where any two nodes can communicate directly via the underlying Internet as long as the sender knows the recipient’s ipaddress. Due to the scalability requirement, the overlay network must be sparse: a given node can store at most a polylogarithmic number of ipad ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
We consider a large overlay network where any two nodes can communicate directly via the underlying Internet as long as the sender knows the recipient’s ipaddress. Due to the scalability requirement, the overlay network must be sparse: a given node can store at most a polylogarithmic number of ipaddresses. A notion of distance (locality) in the network is given by nodetonode roundtrip times. We assume that initially the overlay links are random, and hence have no explicit localityaware properties. We provide fast distributed constructions for various localityaware (lowstretch) distributed data structures, such as: distance labeling schemes, nameindependent routing schemes, and multicast trees. In previous work, such data structures have only been constructed via centralized algorithms. Our constructions complete in polylogarithmic time (and thus induce at most a polylogarithmic load on every given node), and achieve quality guarantees similar to those of the corresponding centralized algorithms. Our algorithms use a common localityaware, smallworldlike overlay framework, constructed via concurrent random walks. Our guarantees are for growthconstrained metrics, a wellstudied family of
Meridian: A Lightweight Framework for Network Location without Virtual Coordinates
 In Proc. of ACM SIGCOMM
, 2005
"... Selecting nodes based on their position in the network is a basic building block for many distributed systems. This paper describes a peertopeer overlay network for performing positionbased node selection. Our system, Meridian, provides a lightweight, accurate and scalable framework for keeping t ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Selecting nodes based on their position in the network is a basic building block for many distributed systems. This paper describes a peertopeer overlay network for performing positionbased node selection. Our system, Meridian, provides a lightweight, accurate and scalable framework for keeping track of location information for participating nodes. The framework consists of an overlay network structured around multiresolution rings, query routing with direct measurements, and gossip protocols for dissemination. We show how this framework can be used to address three commonly encountered problems in largescale distributed systems without having to compute absolute coordinates; namely, closest node discovery, central leader election, and locating nodes that satisfy target latency constraints. We show analytically that the framework is scalable with logarithmic convergence when Internet latencies are modeled as a growthconstrained metric, a lowdimensional Euclidian metric, or a metric of low doubling dimension. Large scale simulations, based on latency measurements from 6.25 million nodepairs, and an implementation deployed on PlanetLab both show that the framework is accurate and effective. 1
A Framework for Network LocationAware Node Selection
"... We introduce a lightweight, scalable and accurate framework for performing node selection based on network location. The framework, called Meridian, consists of an overlay network structured around multiresolution rings, gossip protocols for ring maintenance, and query routing with direct measureme ..."
Abstract
 Add to MetaCart
We introduce a lightweight, scalable and accurate framework for performing node selection based on network location. The framework, called Meridian, consists of an overlay network structured around multiresolution rings, gossip protocols for ring maintenance, and query routing with direct measurements to satisfy user specified latency constraints. We show how this framework can be used to address three commonly encountered problems, namely, closest node discovery, central leader election, and locating nodes that satisfy target latency constraints in largescale distributed systems without having to compute absolute coordinates. We also present the Meridian Query Language, a domain specific language for users to construct custom node selection queries based on their specific network location requirements. To facilitate adoption of Meridian, we have deployed a service called ClosestNode.com that provides a DNS to Meridian gateway for oblivious clients to initiate Meridian lookups. We show analytically that the framework is scalable with logarithmic convergence when Internet latencies are modeled as a growthconstrained metric, a lowdimensional Euclidean metric, or a metric of low doubling dimension. Large scale simulations, based on latency measurements from 6.25 million nodepairs as well as an implementation deployed on PlanetLab show that the framework is accurate and effective.