Results 1 
8 of
8
Membership Algebra as a Logical Framework for Equational Specification
, 1998
"... This paper proposes membership equational logica Horn logic in which the basic predicates are equations t = t 0 and membership assertions t : s stating that a term t belongs to a sort sas a logical framework in which a very wide range of total and partial equational specification formalisms ..."
Abstract

Cited by 142 (46 self)
 Add to MetaCart
This paper proposes membership equational logica Horn logic in which the basic predicates are equations t = t 0 and membership assertions t : s stating that a term t belongs to a sort sas a logical framework in which a very wide range of total and partial equational specification formalisms can be naturally represented. Key features of this logic include: simplicity, liberality and equational character; generality and expressiveness in supporting subsorts, overloading, errors and partiality; and efficient implementability in systems such as Maude. The paper presents the basic properties of the logic and its models, and discusses in detail how many total and partial equational specification formalisms, including ordersorted algebra and partial membership equational logic, can be represented in it, as well as the practical benefits in terms of tool reusability that this opens up for other languages, including CASL. Table of Contents 1
Categorical Logic
 A CHAPTER IN THE FORTHCOMING VOLUME VI OF HANDBOOK OF LOGIC IN COMPUTER SCIENCE
, 1995
"... ..."
Equivalences among Various Logical Frameworks of Partial Algebras
 Computer Science Logic. 9th Workshop, CSL'95. Paderborn
, 1996
"... We examine a variety of liberal logical frameworks of partial algebras. Therefore we use simple, conjunctive and weak embeddings of institutions which preserve model categories and may map sentences to sentences, finite sets of sentences, or theory extensions using unique existential quantifiers, re ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
We examine a variety of liberal logical frameworks of partial algebras. Therefore we use simple, conjunctive and weak embeddings of institutions which preserve model categories and may map sentences to sentences, finite sets of sentences, or theory extensions using unique existential quantifiers, respectively. They faithfully represent theories, model categories, theory morphisms, colimit of theories, reducts etc. Moreover, along simple and conjunctive embeddings, theorem provers can be reused in a way that soundness and completeness is preserved. Our main result states the equivalence of all the logical frameworks with respect to weak embeddability. This gives us compilers between all frameworks. Thus it is a chance to unify the different branches of specification using liberal partial logics. This is important for reaching the goal of formal interoperability of different specification languages for software development. With formal interoperability, a specification can contain part...
Representations, Hierarchies, and Graphs of Institutions
, 1996
"... For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em institutions} here. Different kinds of representations will lead to a looser or tighter connection of the institutions, with more or less good possibilities of faithfully embedding the semantics and of reusing proof support. In the second part, we then perform a detailed ``empirical'' study of the relations among various wellknown institutions of total, ordersorted and partial algebras and firstorder structures (all with Horn style, i.e.\ universally quantified conditional, axioms). We thus obtain a {\em graph} of institutions, with different kinds of edges according to the different kinds of representations between institutions studied in the first part. We also prove some separation results, leading to a {\em hierarchy} of institutions, which in turn naturally leads to five subgraphs of the above graph of institutions. They correspond to five different levels of expressiveness in the hierarchy, which can be characterized by different kinds of conditional generation principles. We introduce a systematic notation for institutions of total, ordersorted and partial algebras and firstorder structures. The notation closely follows the combination of features that are present in the respective institution. This raises the question whether these combinations of features can be made mathematically precise in some way. In the third part, we therefore study the combination of institutions with the help of socalled parchments (which are certain algebraic presentations of institutions) and parchment morphisms. The present book is a revised version of the author's thesis, where a number of mathematical problems (pointed out by Andrzej Tarlecki) and a number of misuses of the English language (pointed out by Bernd KriegBr\"uckner) have been corrected. Also, the syntax of specifications has been adopted to that of the recently developed Common Algebraic Specification Language {\sc Casl} \cite{CASL/Summary,Mosses97TAPSOFT}.
Different Types of Arrow Between Logical Frameworks
 Proc. ICALP 96, LNCS 1099, 158169
, 1996
"... this paper we argue that these different types of arrow can be generated by one basic type of arrow and monadic constructions on categories of logical frameworks, with the effect of automatically having functors relating the new categories of logical frameworks with the old ones. The paper is organi ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
this paper we argue that these different types of arrow can be generated by one basic type of arrow and monadic constructions on categories of logical frameworks, with the effect of automatically having functors relating the new categories of logical frameworks with the old ones. The paper is organized as follows: in Sect. 2, some types of logical framework and some categorical notions are recalled. Section 3 then introduces, using monads and adjunctions, one wellknown and three new notions of maps between institutions, which vary in the strictness of keeping the signaturesentence distinction. In each case, we briefly show the application to different logical frameworks. Section 4 concludes the paper. Due to lack of space, we omit proofs, which will appear elsewhere. 2 Preliminaries
Parameterized Recursion Theory  A Tool for the Systematic Classification of Specification Methods
 Proceedings of the Third International Conference on Algebraic Methodology and Software Technology, 1993, Workshops in Computing
"... We examine four specification methods with increasing expressiveness. Parameterized recursion theory allows to characterize the power of parameterization in the methods, using a computational model based on Moschovakis' search computability. The four specification methods can be characterized by fou ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
We examine four specification methods with increasing expressiveness. Parameterized recursion theory allows to characterize the power of parameterization in the methods, using a computational model based on Moschovakis' search computability. The four specification methods can be characterized by four different notions of semicomputable parameterized abstract data type, which differ in the availability of the parameter algebra and of nondeterminism. These characterizations further lead to different algebraic properties of specifiable PADTs. Together with example PADTs, they enable us to prove a hierarchy theorem. Given a sample PADT, the algebraic properties help to find out the lowest position (= most restricted method) in the hierarchy usable to specify it. This is important because the available tools may become weaker, if we choose a too general method.
Proving Semantical Equivalence of Data Specifications
 J. Pure and Applied Algebra
, 2005
"... More than two decades ago, Peter Freyd introduced essentially algebraic specifications, a wellbehaved generalization of algebraic specifications, allowing for equational partiality. These essentially algebraic specifications turn out to have a number of very interesting applications in computer ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
More than two decades ago, Peter Freyd introduced essentially algebraic specifications, a wellbehaved generalization of algebraic specifications, allowing for equational partiality. These essentially algebraic specifications turn out to have a number of very interesting applications in computer science.
Categorical Logic
, 2001
"... This document provides an introduction to the interaction between category theory and mathematical logic which is slanted towards computer scientists. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This document provides an introduction to the interaction between category theory and mathematical logic which is slanted towards computer scientists.