Results 1 
2 of
2
Two New Approximation Algorithms for the Maximum Planar Subgraph Problem
, 2006
"... The maximum planar subgraph problem (MPS) is defined as follows: given a graph G, find a largest planar subgraph of G. The problem is NPhard and it has applications in graph drawing and resource location optimization. Călinescu et al. [J. Alg. 27, 269302 (1998)] presented the first approximation a ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The maximum planar subgraph problem (MPS) is defined as follows: given a graph G, find a largest planar subgraph of G. The problem is NPhard and it has applications in graph drawing and resource location optimization. Călinescu et al. [J. Alg. 27, 269302 (1998)] presented the first approximation algorithms for MPS with nontrivial performance ratios. Two algorithms were given, a simple algorithm which runs in linear time for boundeddegree graphs with a ratio 7/18 and a more complicated algorithm with a ratio 4/9. Both algorithms produce outerplanar subgraphs. In this article we present two new versions of the simpler algorithm. The first new algorithm still runs in the same time, produces outerplanar subgraphs, has at least the same performance ratio as the original algorithm, but in practice it finds larger planar subgraphs than the original algorithm. The second new algorithm has similar properties to the first algorithm, but it produces only planar subgraphs. We conjecture that the performance ratios of our algorithms are at least 4/9 for MPS. We experimentally compare the new algorithms against the original simple algorithm. We also apply the new algorithms for approximating the thickness and outerthickness of a graph. Experiments show that the new algorithms produce clearly better approximations than the original simple algorithm by Călinescu et al.
A Polynomial Time Randomized Parallel Approximation Algorithm for Finding Heavy Planar Subgraphs
, 2006
"... We provide an approximation algorithm for the Maximum Weight Planar Subgraph problem, the NPhard problem of finding a heaviest planar subgraph in an edgeweighted graph G. In the general case our algorithm has performance ratio at least 1/3 + 1/72 matching the best algorithm known so far, though in ..."
Abstract
 Add to MetaCart
We provide an approximation algorithm for the Maximum Weight Planar Subgraph problem, the NPhard problem of finding a heaviest planar subgraph in an edgeweighted graph G. In the general case our algorithm has performance ratio at least 1/3 + 1/72 matching the best algorithm known so far, though in several special cases we prove stronger results. In particular, we obtain performance ratio 2/3 (instead of 7/12) for the NPhard Maximum Weight Outerplanar Subgraph problem meeting the performance ratio of the best algorithm for the unweighted case. When the maximum weight planar subgraph is one of several special types of Hamiltonian graphs, we show performance ratios at least 2/5 and 4/9 (instead of 1/3 + 1/72), and 1/2 (instead of 4/9) for the unweighted case.