Results 1 
4 of
4
Reachability is harder for directed than for undirected finite graphs
 Journal of Symbolic Logic
, 1990
"... Abstract. Although it is known that reachability in undirected finite graphs can be expressed by an existential monadic secondorder sentence, our main result is that this is not the case for directed finite graphs (even in the presence of certain “builtin ” relations, such as the successor relatio ..."
Abstract

Cited by 71 (8 self)
 Add to MetaCart
Abstract. Although it is known that reachability in undirected finite graphs can be expressed by an existential monadic secondorder sentence, our main result is that this is not the case for directed finite graphs (even in the presence of certain “builtin ” relations, such as the successor relation). The proof makes use of EhrenfeuchtFrai’sse games, along with probabilistic arguments. However, we show that for directed finite graphs with degree at most k, reachability is expressible by an existential monadic secondorder sentence. $1. Introduction. If s and t denote distinguished points in a directed (resp. undirected) graph, then we say that a graph is (s, t)connected if there is a directed (undirected) path from s to t. We sometimes refer to the problem of deciding whether a given directed (undirected) graph with two given points sand t is (s, t)connected as the directed (undirected) reachability problem.
Predicative Recursion and Computational Complexity
, 1992
"... The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct r ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct reference to polynomials, time, or even computation. Complexity classes characterized in this way include polynomial time, the functional polytime hierarchy, the logspace decidable problems, and NC. After developing these "resource free" definitions, we apply them to redeveloping the feasible logical system of Cook and Urquhart, and show how this firstorder system relates to the secondorder system of Leivant. The connection is an interesting one since the systems were defined independently and have what appear to be very different rules for the principle of induction. Furthermore it is interesting to see, albeit in a very specific context, how to retract a second order statement, ("inducti...
Representations, Hierarchies, and Graphs of Institutions
, 1996
"... For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
For the specification of abstract data types, quite a number of logical systems have been developed. In this work, we will try to give an overview over this variety. As a prerequisite, we first study notions of {\em representation} and embedding between logical systems, which are formalized as {\em institutions} here. Different kinds of representations will lead to a looser or tighter connection of the institutions, with more or less good possibilities of faithfully embedding the semantics and of reusing proof support. In the second part, we then perform a detailed ``empirical'' study of the relations among various wellknown institutions of total, ordersorted and partial algebras and firstorder structures (all with Horn style, i.e.\ universally quantified conditional, axioms). We thus obtain a {\em graph} of institutions, with different kinds of edges according to the different kinds of representations between institutions studied in the first part. We also prove some separation results, leading to a {\em hierarchy} of institutions, which in turn naturally leads to five subgraphs of the above graph of institutions. They correspond to five different levels of expressiveness in the hierarchy, which can be characterized by different kinds of conditional generation principles. We introduce a systematic notation for institutions of total, ordersorted and partial algebras and firstorder structures. The notation closely follows the combination of features that are present in the respective institution. This raises the question whether these combinations of features can be made mathematically precise in some way. In the third part, we therefore study the combination of institutions with the help of socalled parchments (which are certain algebraic presentations of institutions) and parchment morphisms. The present book is a revised version of the author's thesis, where a number of mathematical problems (pointed out by Andrzej Tarlecki) and a number of misuses of the English language (pointed out by Bernd KriegBr\"uckner) have been corrected. Also, the syntax of specifications has been adopted to that of the recently developed Common Algebraic Specification Language {\sc Casl} \cite{CASL/Summary,Mosses97TAPSOFT}.