Results 1  10
of
166
Exploiting Generative Models in Discriminative Classifiers
 In Advances in Neural Information Processing Systems 11
, 1998
"... Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often resu ..."
Abstract

Cited by 415 (11 self)
 Add to MetaCart
Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often result in classification performance superior to that of the model based approaches. An ideal classifier should combine these two complementary approaches. In this paper, we develop a natural way of achieving this combination by deriving kernel functions for use in discriminative methods such as support vector machines from generative probability models. We provide a theoretical justification for this combination as well as demonstrate a substantial improvement in the classification performance in the context of DNA and protein sequence analysis.
Hidden Markov models for detecting remote protein homologies
 Bioinformatics
, 1998
"... A new hidden Markov model method (SAMT98) for nding remote homologs of protein sequences is described and evaluated. The method begins with a single target sequence and iteratively builds a hidden Markov model (hmm) from the sequence and homologs found using the hmm for database search. SAMT98 is ..."
Abstract

Cited by 347 (12 self)
 Add to MetaCart
(Show Context)
A new hidden Markov model method (SAMT98) for nding remote homologs of protein sequences is described and evaluated. The method begins with a single target sequence and iteratively builds a hidden Markov model (hmm) from the sequence and homologs found using the hmm for database search. SAMT98 is also used to construct model libraries automatically from sequences in structural databases. We evaluate the SAMT98 method with four datasets. Three of the test sets are foldrecognition tests, where the correct answers are determined by structural similarity. The fourth uses a curated database. The method is compared against wublastp and against doubleblast, a twostep method similar to ISS, but using blast instead of fasta. Results SAMT98 had the fewest errors in all tests dramatically so for the foldrecognition tests. At the minimumerror point on the SCOPdomains test, SAMT98 got 880 true positives and 68 false positives, doubleblast got 533 true positives with 71 false positives, and wublastp got 353 true positives with 24 false positives. The method is optimized to recognize superfamilies, and would require parameter adjustment to be used to nd family or fold relationships. One key to the performance of the hmm method is a new scorenormalization technique that compares the score to the score with a reversed model rather than to a uniform null model. Availability A World Wide Web server, as well as information on obtaining the Sequence Alignment and PREPRINT to appear in Bioinformatics, 1999
A Discriminative Framework for Detecting Remote Protein Homologies
, 1999
"... A new method for detecting remote protein homologies is introduced and shown to perform well in classifying protein domains by SCOP superfamily. The method is a variant of support vector machines using a new kernel function. The kernel function is derived from a generative statistical model for a ..."
Abstract

Cited by 211 (4 self)
 Add to MetaCart
(Show Context)
A new method for detecting remote protein homologies is introduced and shown to perform well in classifying protein domains by SCOP superfamily. The method is a variant of support vector machines using a new kernel function. The kernel function is derived from a generative statistical model for a protein family, in this case a hidden Markov model. This general approach of combining generative models like HMMs with discriminative methods such as support vector machines may have applications in other areas of biosequence analysis as well.
Hidden Markov models for sequence analysis: extension and analysis of the basic method
, 1996
"... Hidden Markov models (HMMs) are a highly effective means of modeling a family of unaligned sequences or a common motif within a set of unaligned sequences. The trained HMM can then be used for discrimination or multiple alignment. The basic mathematical description of an HMM and its expectationmaxi ..."
Abstract

Cited by 174 (21 self)
 Add to MetaCart
(Show Context)
Hidden Markov models (HMMs) are a highly effective means of modeling a family of unaligned sequences or a common motif within a set of unaligned sequences. The trained HMM can then be used for discrimination or multiple alignment. The basic mathematical description of an HMM and its expectationmaximization training procedure is relatively straightforward. In this paper, we review the mathematical extensions and heuristics that move the method from the theoretical to the practical. Then, we experimentally analyze the effectiveness of model regularization, dynamic model modification, and optimization strategies. Finally it is demonstrated on the SH2 domain how a domain can be found from unaligned sequences using a special model type. The experimental work was completed with the aid of the Sequence Alignment and Modeling software suite. 1 Introduction Since their introduction to the computational biology community (Haussler et al., 1993; Krogh et al., 1994a), hidden Markov models (HMMs...
PROBCONS: Probabilistic consistencybased multiple sequence alignment
 Genome Res
, 2005
"... To study gene evolution across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein families. Obtaining accurate alignments, however, is a difficult computational problem because of not only the high computational cost but also the lack of proper objec ..."
Abstract

Cited by 171 (8 self)
 Add to MetaCart
(Show Context)
To study gene evolution across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein families. Obtaining accurate alignments, however, is a difficult computational problem because of not only the high computational cost but also the lack of proper objective functions for measuring alignment quality. In this paper, we introduce probabilistic consistency, a novel scoring function for multiple sequence comparisons. We present PROBCONS, a practical tool for progressive protein multiple sequence alignment based on probabilistic consistency, and evaluate its performance on several standard alignment benchmark datasets. On the BAliBASE, SABmark, and PREFAB benchmark alignment databases, PROBCONS achieves statistically significant improvement over other leading methods while maintaining practical speed. PROBCONS is publicly available as a web resource. Source code and executables are available under the GNU Public License at
Using the Fisher kernel method to detect remote protein homologies
 In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology
, 1999
"... A new method, called the Fisher kernel method, for detecting remote protein homologies is introduced and shown to perform well in classifying protein domains by SCOP superfamily. The method is a variant of support vector machines using a new kernel function. The kernel function is derived from a hid ..."
Abstract

Cited by 170 (3 self)
 Add to MetaCart
(Show Context)
A new method, called the Fisher kernel method, for detecting remote protein homologies is introduced and shown to perform well in classifying protein domains by SCOP superfamily. The method is a variant of support vector machines using a new kernel function. The kernel function is derived from a hidden Markov model. The general approach of combining generative models like HMMs with discriminative methods such as support vector machines may have applications in other areas of biosequence analysis as well.
Combining pairwise sequence similarity and support vector machines for remote protein homology detection
 Proc. 6th Ann. Int. Conf. Computational Molecular Biology
, 2002
"... One key element in understanding the molecular machinery of the cell is to understand the structure and function of each protein encoded in the genome. A very successful means of inferring the structure or function of a previously unannotated protein is via sequence similarity with one or more prote ..."
Abstract

Cited by 159 (19 self)
 Add to MetaCart
(Show Context)
One key element in understanding the molecular machinery of the cell is to understand the structure and function of each protein encoded in the genome. A very successful means of inferring the structure or function of a previously unannotated protein is via sequence similarity with one or more proteins whose structure or function is already known. Toward this end, we propose a means of representing proteins using pairwise sequence similarity scores. This representation, combined with a discriminative classi � cation algorithm known as the support vector machine (SVM), provides a powerful means of detecting subtle structural and evolutionary relationships among proteins. The algorithm, called SVMpairwise, when tested on its ability to recognize previously unseen families from the SCOP database, yields signi � cantly better performance than SVMFisher, pro � le HMMs, and PSIBLAST. Key words: pairwise sequence comparison, homology, detection, support vector machines. 1.
Mismatch string kernels for discriminative protein classification
 Bioinformatics
, 2004
"... Motivation: Classification of proteins sequences into functional and structural families based on sequence homology is a central problem in computational biology. Discriminative supervised machine learning approaches provide good performance, but simplicity and computational efficiency of training a ..."
Abstract

Cited by 151 (8 self)
 Add to MetaCart
(Show Context)
Motivation: Classification of proteins sequences into functional and structural families based on sequence homology is a central problem in computational biology. Discriminative supervised machine learning approaches provide good performance, but simplicity and computational efficiency of training and prediction are also important concerns. Results: We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the problem of protein classification and remote homology detection. These kernels measure sequence similarity based on shared occurrences of fixedlength patterns in the data, allowing for mutations between patterns.Thus, the kernels provide a biologically wellmotivated way to compare protein sequences without relying on familybased generative models such as hidden Markov models. We compute the kernels efficiently using a mismatch tree data structure, allowing us to calculate the contributions of all patterns occurring in the data in one pass while traversing the tree. When used with an SVM, the kernels enable fast prediction on test sequences. We report experiments on two benchmark SCOP datasets, where we show that the mismatch kernel used with an SVM classifier performs competitively with stateoftheart methods for homology detection, particularly when very few training examples are available. Examination of the highestweighted patterns learned by the SVM classifier recovers biologically important motifs in protein families and superfamilies. Availability: SVM software is publicly available at
W.S.: Mismatch string kernels for SVM protein classification
 In: Proc. of NIPS. (2003
"... We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. These kernels measure sequence similarity based on shared occurrences of klength subsequences, counted with up to m mismat ..."
Abstract

Cited by 136 (17 self)
 Add to MetaCart
(Show Context)
We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. These kernels measure sequence similarity based on shared occurrences of klength subsequences, counted with up to m mismatches, and do not rely on any generative model for the positive training sequences. We compute the kernels efficiently using a mismatch tree data structure and report experiments on a benchmark SCOP dataset, where we show that the mismatch kernel used with an SVM classifier performs as well as the Fisher kernel, the most successful method for remote homology detection, while achieving considerable computational savings. 1
Dirichlet Mixtures: A Method for Improving Detection of Weak but Significant Protein Sequence Homology
, 1996
"... This paper presents the mathematical foundations of Dirichlet mixtures, which have been used to improve database search results for homologous sequences, when a variable number of sequences from a protein family or domain are known. We present a method for condensing the information in a protein dat ..."
Abstract

Cited by 136 (22 self)
 Add to MetaCart
(Show Context)
This paper presents the mathematical foundations of Dirichlet mixtures, which have been used to improve database search results for homologous sequences, when a variable number of sequences from a protein family or domain are known. We present a method for condensing the information in a protein database into a mixture of Dirichlet densities. These mixtures are designed to be combined with observed amino acid frequencies, to form estimates of expected amino acid probabilities at each position in a profile, hidden Markov model, or other statistical model. These estimates give a statistical model greater generalization capacity, such that remotely related family members can be more reliably recognized by the model. Dirichlet mixtures have been shown to outperform substitution matrices and other methods for computing these expected amino acid distributions in database search, resulting in fewer false positives and false negatives for the families tested. This paper corrects a previously p...