Results 1 
3 of
3
HZalgebra spectra are differential graded algebras
 Amer. Jour. Math
, 2004
"... Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Qu ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Quillen equivalences between the differential graded modules and module spectra over these algebras. We use these equivalences in turn to produce algebraic models for rational stable model categories. We show that bascially any rational stable model category is Quillen equivalent to modules over a differential graded Qalgebra (with many objects). 1.
Equivalences of monoidal model categories
 Algebr. Geom. Topol
, 2002
"... Abstract: We construct Quillen equivalences between the model categories of monoids (rings), modules and algebras over two Quillen equivalent model categories under certain conditions. This is a continuation of our earlier work where we established model categories of monoids, modules and algebras [ ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Abstract: We construct Quillen equivalences between the model categories of monoids (rings), modules and algebras over two Quillen equivalent model categories under certain conditions. This is a continuation of our earlier work where we established model categories of monoids, modules and algebras [SS00]. As an application we extend the DoldKan equivalence to show that the model categories of simplicial rings, modules and algebras are Quillen equivalent to the associated model categories of connected differential graded rings, modules and algebras. We also show that our classification results from [SS] concerning stable model categories translate to any one of the known symmetric monoidal model categories of spectra. 1.
Classification of Stable Model Categories
"... A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent `the same homotopy theory'. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a `ring spectrum with several objects', i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard's work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the EilenbergMac Lane spectrum HR and (unbounded) chain complexes of Rmodules for a ring R. 1.