Results 1  10
of
67
Categorical homotopy theory
 Homology, Homotopy Appl
"... This paper is an exposition of the ideas and methods of Cisinksi, in the context of Apresheaves on a small ..."
Abstract

Cited by 168 (7 self)
 Add to MetaCart
This paper is an exposition of the ideas and methods of Cisinksi, in the context of Apresheaves on a small
Stable model categories are categories of modules
 TOPOLOGY
, 2003
"... A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for ..."
Abstract

Cited by 78 (16 self)
 Add to MetaCart
A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent ‘the same homotopy theory’. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a ‘ring spectrum with several objects’, i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard’s work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the EilenbergMac Lane spectrum HR and (unbounded) chain complexes of Rmodules for a ring R.
Spectra and symmetric spectra in general model categories
 J. Pure Appl. Algebra
"... Abstract. We give two general constructions for the passage from unstable to stable homotopy that apply to the known example of topological spaces, but also to new situations, such as the A1homotopy theory of MorelVoevodsky [16, 23]. One is based on the standard notion of spectra originated by Boa ..."
Abstract

Cited by 55 (0 self)
 Add to MetaCart
Abstract. We give two general constructions for the passage from unstable to stable homotopy that apply to the known example of topological spaces, but also to new situations, such as the A1homotopy theory of MorelVoevodsky [16, 23]. One is based on the standard notion of spectra originated by Boardman [24]. Its input is a wellbehaved model category C and an endofunctor
HZalgebra spectra are differential graded algebras
 Amer. Jour. Math
, 2004
"... Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Qu ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
Abstract: We show that the homotopy theory of differential graded algebras coincides with the homotopy theory of HZalgebra spectra. Namely, we construct Quillen equivalences between the Quillen model categories of (unbounded) differential graded algebras and HZalgebra spectra. We also construct Quillen equivalences between the differential graded modules and module spectra over these algebras. We use these equivalences in turn to produce algebraic models for rational stable model categories. We show that bascially any rational stable model category is Quillen equivalent to modules over a differential graded Qalgebra (with many objects). 1.
Morita theory in abelian, derived and stable model categories, Structured ring spectra
 London Math. Soc. Lecture Note Ser
, 2004
"... These notes are based on lectures given at the Workshop on Structured ring spectra and ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
These notes are based on lectures given at the Workshop on Structured ring spectra and
On Voevodsky’s algebraic Ktheory spectrum BGL
, 2007
"... Under a certain normalization assumption we prove that the P 1spectrum BGL of Voevodsky which represents algebraic Ktheory is unique over Spec(Z). Following an idea of Voevodsky, we equip the P 1spectrum BGL with the structure of a commutative ring P 1spectrum in the motivic stable homotopy cate ..."
Abstract

Cited by 13 (6 self)
 Add to MetaCart
Under a certain normalization assumption we prove that the P 1spectrum BGL of Voevodsky which represents algebraic Ktheory is unique over Spec(Z). Following an idea of Voevodsky, we equip the P 1spectrum BGL with the structure of a commutative ring P 1spectrum in the motivic stable homotopy category. Furthermore, we prove that under a certain normalization assumption this ring structure is unique over Spec(Z). For an arbitrary Noetherian base scheme S we pull this structure back to get a distinguished monoidal structure on BGL. 1
Suite spectrale d'Adams et invariants cohomologiques des formes quadratiques
"... For any field k of characteristic 0 the Adams spectral sequence for the sphere spectrum based on SuslinVoevodsky mod 2 motivic cohomology [8] converges to the graded ring associated to the filtration of the GrothendieckWitt ring of quadratic forms over k by powers of the ideal generated by even di ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
For any field k of characteristic 0 the Adams spectral sequence for the sphere spectrum based on SuslinVoevodsky mod 2 motivic cohomology [8] converges to the graded ring associated to the filtration of the GrothendieckWitt ring of quadratic forms over k by powers of the ideal generated by even dimensional forms. Moreover, some property of the mod 2 motivic cohomology of k, which is a consequence of Voevodsky's proof of Milnor's conjecture on mod 2 Galois cohomology of k [9], implies that the spectral sequence degenerates in the critical area. This allows us to give a new proof of the Milnor conjecture on the graded ring of of the Witt ring of k [4] which differs from [11].
(Pre)sheaves of Ring Spectra over the Moduli Stack of Formal Group Laws
, 2004
"... In the first part of this article, I will state a realization problem for diagrams of structured ring spectra, and in the second, I will discuss the moduli space which parametrizes the problem. ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
In the first part of this article, I will state a realization problem for diagrams of structured ring spectra, and in the second, I will discuss the moduli space which parametrizes the problem.