Results 11  20
of
224
Nominal techniques in Isabelle/HOL
 Proceedings of the 20th International Conference on Automated Deduction (CADE20
, 2005
"... Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induc ..."
Abstract

Cited by 82 (13 self)
 Add to MetaCart
Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induction principle that requires to prove the lambdacase for fresh binders only. The main technical novelty of this work is that it is compatible with the axiomofchoice (unlike earlier nominal logic work by Pitts et al); thus we were able to implement all results in Isabelle/HOL and use them to formalise the standard proofs for ChurchRosser and strongnormalisation. Keywords. Lambdacalculus, nominal logic, structural induction, theoremassistants.
Automating the Meta Theory of Deductive Systems
, 2000
"... not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, a ..."
Abstract

Cited by 79 (16 self)
 Add to MetaCart
not be interpreted as representing the o cial policies, either expressed or implied, of NSF or the U.S. Government. This thesis describes the design of a metalogical framework that supports the representation and veri cation of deductive systems, its implementation as an automated theorem prover, and experimental results related to the areas of programming languages, type theory, and logics. Design: The metalogical framework extends the logical framework LF [HHP93] by a metalogic M + 2. This design is novel and unique since it allows higherorder encodings of deductive systems and induction principles to coexist. On the one hand, higherorder representation techniques lead to concise and direct encodings of programming languages and logic calculi. Inductive de nitions on the other hand allow the formalization of properties about deductive systems, such as the proof that an operational semantics preserves types or the proof that a logic is is a proof calculus whose proof terms are recursive functions that may be consistent.M +
Elf: A Language for Logic Definition and Verified Metaprogramming
 In Fourth Annual Symposium on Logic in Computer Science
, 1989
"... We describe Elf, a metalanguage for proof manipulation environments that are independent of any particular logical system. Elf is intended for metaprograms such as theorem provers, proof transformers, or type inference programs for programming languages with complex type systems. Elf unifies logic ..."
Abstract

Cited by 77 (8 self)
 Add to MetaCart
We describe Elf, a metalanguage for proof manipulation environments that are independent of any particular logical system. Elf is intended for metaprograms such as theorem provers, proof transformers, or type inference programs for programming languages with complex type systems. Elf unifies logic definition (in the style of LF, the Edinburgh Logical Framework) with logic programming (in the style of Prolog). It achieves this unification by giving types an operational interpretation, much the same way that Prolog gives certain formulas (Hornclauses) an operational interpretation. Novel features of Elf include: (1) the Elf search process automatically constructs terms that can represent objectlogic proofs, and thus a program need not construct them explicitly, (2) the partial correctness of metaprograms with respect to a given logic can be expressed and proved in Elf itself, and (3) Elf exploits Elliott's unification algorithm for a calculus with dependent types. This research was...
A concurrent logical framework I: Judgments and properties
, 2003
"... The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous con ..."
Abstract

Cited by 74 (25 self)
 Add to MetaCart
The Concurrent Logical Framework, or CLF, is a new logical framework in which concurrent computations can be represented as monadic objects, for which there is an intrinsic notion of concurrency. It is designed as a conservative extension of the linear logical framework LLF with the synchronous connectives# of intuitionistic linear logic, encapsulated in a monad. LLF is itself a conservative extension of LF with the asynchronous connectives #, & and #.
Cutelimination for a logic with definitions and induction
 Theoretical Computer Science
, 1997
"... In order to reason about specifications of computations that are given via the proof search or logic programming paradigm one needs to have at least some forms of induction and some principle for reasoning about the ways in which terms are built and the ways in which computations can progress. The l ..."
Abstract

Cited by 61 (19 self)
 Add to MetaCart
In order to reason about specifications of computations that are given via the proof search or logic programming paradigm one needs to have at least some forms of induction and some principle for reasoning about the ways in which terms are built and the ways in which computations can progress. The literature contains many approaches to formally adding these reasoning principles with logic specifications. We choose an approach based on the sequent calculus and design an intuitionistic logic F Oλ ∆IN that includes natural number induction and a notion of definition. We have detailed elsewhere that this logic has a number of applications. In this paper we prove the cutelimination theorem for F Oλ ∆IN, adapting a technique due to Tait and MartinLöf. This cutelimination proof is technically interesting and significantly extends previous results of this kind. 1
HigherOrder Horn Clauses
 JOURNAL OF THE ACM
, 1990
"... A generalization of Horn clauses to a higherorder logic is described and examined as a basis for logic programming. In qualitative terms, these higherorder Horn clauses are obtained from the firstorder ones by replacing firstorder terms with simply typed #terms and by permitting quantification ..."
Abstract

Cited by 61 (20 self)
 Add to MetaCart
A generalization of Horn clauses to a higherorder logic is described and examined as a basis for logic programming. In qualitative terms, these higherorder Horn clauses are obtained from the firstorder ones by replacing firstorder terms with simply typed #terms and by permitting quantification over all occurrences of function symbols and some occurrences of predicate symbols. Several prooftheoretic results concerning these extended clauses are presented. One result shows that although the substitutions for predicate variables can be quite complex in general, the substitutions necessary in the context of higherorder Horn clauses are tightly constrained. This observation is used to show that these higherorder formulas can specify computations in a fashion similar to firstorder Horn clauses. A complete theorem proving procedure is also described for the extension. This procedure is obtained by interweaving higherorder unification with backchaining and goal reductions, and constitutes a higherorder generalization of SLDresolution. These results have a practical realization in the higherorder logic programming language called λProlog.
A Proof Theory for Generic Judgments
, 2003
"... this paper, we do this by adding the #quantifier: its role will be to declare variables to be new and of local scope. The syntax of the formula # x.B is like that for the universal and existential quantifiers. Following Church's Simple Theory of Types [Church 1940], formulas are given the type ..."
Abstract

Cited by 60 (14 self)
 Add to MetaCart
this paper, we do this by adding the #quantifier: its role will be to declare variables to be new and of local scope. The syntax of the formula # x.B is like that for the universal and existential quantifiers. Following Church's Simple Theory of Types [Church 1940], formulas are given the type o, and for all types # not containing o, # is a constant of type (# o) o. The expression # #x.B is ACM Transactions on Computational Logic, Vol. V, No. N, October 2003. 4 usually abbreviated as simply # x.B or as if the type information is either simple to infer or not important
Revisiting Catamorphisms over Datatypes with Embedded Functions (or, Programs from Outer Space)
 In Conf. Record 23rd ACM SIGPLAN/SIGACT Symp. on Principles of Programming Languages, POPL’96, St. Petersburg Beach
, 1996
"... We revisit the work of Paterson and of Meijer & Hutton, which describes how to construct catamorphisms for recursive datatype definitions that embed contravariant occurrences of the type being defined. Their construction requires, for each catamorphism, the definition of an anamorphism that has an i ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
We revisit the work of Paterson and of Meijer & Hutton, which describes how to construct catamorphisms for recursive datatype definitions that embed contravariant occurrences of the type being defined. Their construction requires, for each catamorphism, the definition of an anamorphism that has an inverselike relationship to that catamorphism. We present an alternative construction, which replaces the stringent requirement that an inverse anamorphism be defined for each catamorphism with a more lenient restriction. The resulting construction has a more efficient implementation than that of Paterson, Meijer, and Hutton and the relevant restriction can be enforced by a HindleyMilner type inference algorithm. We provide numerous examples illustrating our method. 1 Introduction Functional programmers often use catamorphisms (or fold functions) as an elegant means of expressing algorithms over algebraic datatypes. Catamorphisms have also been used by functional programmers as a medium in ...
Nominal Unification
 Theoretical Computer Science
, 2003
"... We present a generalisation of firstorder unification to the practically important case of equations between terms involving binding operations. A substitution of terms for variables solves such an equation if it makes the equated terms #equivalent, i.e. equal up to renaming bound names. For the a ..."
Abstract

Cited by 52 (20 self)
 Add to MetaCart
We present a generalisation of firstorder unification to the practically important case of equations between terms involving binding operations. A substitution of terms for variables solves such an equation if it makes the equated terms #equivalent, i.e. equal up to renaming bound names. For the applications we have in mind, we must consider the simple, textual form of substitution in which names occurring in terms may be captured within the scope of binders upon substitution. We are able to take a `nominal' approach to binding in which bound entities are explicitly named (rather than using nameless, de Bruijnstyle representations) and yet get a version of this form of substitution that respects #equivalence and possesses good algorithmic properties. We achieve this by adapting an existing idea and introducing a key new idea. The existing idea is terms involving explicit substitutions of names for names, except that here we only use explicit permutations (bijective substitutions). The key new idea is that the unification algorithm should solve not only equational problems, but also problems about the freshness of names for terms. There is a simple generalisation of the classical firstorder unification algorithm to this setting which retains the latter's pleasant properties: unification problems involving #equivalence and freshness are decidable; and solvable problems possess most general solutions.
Five axioms of alphaconversion
 Ninth international Conference on Theorem Proving in Higher Order Logics TPHOL
, 1996
"... Abstract. We present five axioms of namecarrying lambdaterms identified up to alphaconversion—that is, up to renaming of bound variables. We assume constructors for constants, variables, application and lambdaabstraction. Other constants represent a function Fv that returns the set of free variab ..."
Abstract

Cited by 52 (0 self)
 Add to MetaCart
Abstract. We present five axioms of namecarrying lambdaterms identified up to alphaconversion—that is, up to renaming of bound variables. We assume constructors for constants, variables, application and lambdaabstraction. Other constants represent a function Fv that returns the set of free variables in a term and a function that substitutes a term for a variable free in another term. Our axioms are (1) equations relating Fv and each constructor, (2) equations relating substitution and each constructor, (3) alphaconversion itself, (4) unique existence of functions on lambdaterms defined by structural iteration, and (5) construction of lambdaabstractions given certain functions from variables to terms. By building a model from de Bruijn’s nameless lambdaterms, we show that our five axioms are a conservative extension of HOL. Theorems provable from the axioms include distinctness, injectivity and an exhaustion principle for the constructors, principles of structural induction and primitive recursion on lambdaterms, Hindley and Seldin’s substitution lemmas and