Results 11  20
of
70
The Abella interactive theorem prover (system description
 In Fourth International Joint Conference on Automated Reasoning
, 2008
"... Abella [3] is an interactive system for reasoning about aspects of object languages that have been formally presented through recursive rules based on syntactic structure. Abella utilizes a twolevel logic approach to specification and reasoning. One level is defined by a specification logic which s ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
Abella [3] is an interactive system for reasoning about aspects of object languages that have been formally presented through recursive rules based on syntactic structure. Abella utilizes a twolevel logic approach to specification and reasoning. One level is defined by a specification logic which supports a transparent
Induction and coinduction in sequent calculus
 Postproceedings of TYPES 2003, number 3085 in LNCS
, 2003
"... Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than sett ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than settheoretic) notion of definition [13, 20, 25, 51]. Definitions are akin to (stratified) logic programs, where the left and right rules for defined atoms allow one to view theories as “closed ” or defining fixed points. The use of definitions makes it possible to reason intensionally about syntax, in particular enforcing free equality via unification. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and coinductively about properties of computational system making full use of higherorder abstract syntax. Consistency is guaranteed via cutelimination, where we give the first, to our knowledge, cutelimination procedure in the presence of general inductive and coinductive definitions. 1
Abstract syntax and variable binding (extended abstract
 In Proc. 14 th LICS
, 1999
"... Abstract We develop a theory of abstract syntax with variable binding. To every binding signature we associate a category of models consisting of variable sets endowed with both a (binding) algebra and a substitution structure compatible with each other. The syntax generated by the signature is the ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Abstract We develop a theory of abstract syntax with variable binding. To every binding signature we associate a category of models consisting of variable sets endowed with both a (binding) algebra and a substitution structure compatible with each other. The syntax generated by the signature is the initial model. This gives a notion of initial algebra semantics encompassing the traditional one; besides compositionality, it automatically verifies the semantic substitution lemma.
Interpreting Strands in Linear Logic
, 2000
"... The adoption of the DolevYao model, an abstraction of security protocols that supports symbolic reasoning, is responsible for many successes in protocol analysis. In particular, it has enabled using logic effectively to reason about protocols. One recent framework for expressing the basic assumptio ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
The adoption of the DolevYao model, an abstraction of security protocols that supports symbolic reasoning, is responsible for many successes in protocol analysis. In particular, it has enabled using logic effectively to reason about protocols. One recent framework for expressing the basic assumptions of the DolevYao model is given by strand spaces, certain directed graphs whose structure reflects causal interactions among protocol participants. We represent strand constructions as relatively simple formulas in firstorder linear logic, a refinement of traditional logic known for an intrinsic and natural accounting of process states, events, and resources. The proposed encoding is shown to be sound and complete. Interestingly, this encoding differs from the multiset rewriting definition of the DolevYao model, which is also based on linear logic. This raises the possibility that the multiset rewriting framework may differ from strand spaces in some subtle way, although the two settings are known to agree on the basic secrecy property. 1 Introduction In recent years, a variety of methods have been developed for analyzing and reasoning about protocols based on cryptographic primitives. Although there are many differences among these proposals, most current formal approaches use the socalled "DolevYao" model of adversary capabilities, which appears to be drawn from positions taken in [34] and from a simplified model presented in [11]. In this idealized setting, a protocol adversary is allowed to nondeterministically choose among possible actions. Messages are composed of indivisible abstract values, not sequences of bits, and encryption is modeled in an idealized way. The adversary may only send messages comprised of data it "knows" as the result of overhearing past transmissions.
A Proof Search Specification of the πCalculus
 IN 3RD WORKSHOP ON THE FOUNDATIONS OF GLOBAL UBIQUITOUS COMPUTING
, 2004
"... We present a metalogic that contains a new quantifier (for encoding "generic judgment") and inference rules for reasoning within fixed points of a given specification. We then specify the operational semantics and bisimulation relations for the finite πcalculus within this metalogic. Since we ..."
Abstract

Cited by 21 (11 self)
 Add to MetaCart
We present a metalogic that contains a new quantifier (for encoding "generic judgment") and inference rules for reasoning within fixed points of a given specification. We then specify the operational semantics and bisimulation relations for the finite πcalculus within this metalogic. Since we
The Bedwyr system for model checking over syntactic expressions
 21th Conference on Automated Deduction, LNAI 4603, 391–397
, 2007
"... Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expressions possibly containing bindings. This system, written in OCaml, is a direct implementation of two recent advances in the theory of proof search. The first is centered on the fact that both finit ..."
Abstract

Cited by 21 (12 self)
 Add to MetaCart
Bedwyr is a generalization of logic programming that allows model checking directly on syntactic expressions possibly containing bindings. This system, written in OCaml, is a direct implementation of two recent advances in the theory of proof search. The first is centered on the fact that both finite success and finite failure can be captured in the sequent calculus by incorporating inference rules for definitions that allow fixed points to be explored. As a result, proof search in such a sequent calculus can capture simple model checking problems as well as may and must behavior in operational semantics. The second is that higherorder abstract syntax is directly supported using termlevel λbinders and the quantifier known as ∇. These features allow reasoning directly on expressions containing bound variables. 2
Recursion for HigherOrder Encodings
"... This paper describes a calculus of partial recursive functions that range over arbitrary and possibly higherorder objects in LF [HHP93]. Its most novel features include recursion under lambdabinders and matching against dynamically introduced parameters. ..."
Abstract

Cited by 19 (11 self)
 Add to MetaCart
This paper describes a calculus of partial recursive functions that range over arbitrary and possibly higherorder objects in LF [HHP93]. Its most novel features include recursion under lambdabinders and matching against dynamically introduced parameters.
Recursion over Objects of Functional Type
, 1999
"... This paper presents an extension of the simpletyped lambdacalculus allowing iteration and case... ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
This paper presents an extension of the simpletyped lambdacalculus allowing iteration and case...
A Definitional TwoLevel Approach to Reasoning with HigherOrder Abstract Syntax
 Journal of Automated Reasoning
, 2010
"... Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use it in a multilevel reasoning fashion, similar in spirit to other metalogics such as Linc and Twelf. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of nonstratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuationmachine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly
Combining generic judgments with recursive definitions
 in "23th Symp. on Logic in Computer Science", F. PFENNING (editor), IEEE Computer Society Press, 2008, p. 33–44, http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08a.pdf US
"... Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow di ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Many semantical aspects of programming languages are specified through calculi for constructing proofs: consider, for example, the specification of structured operational semantics, labeled transition systems, and typing systems. Recent proof theory research has identified two features that allow direct, logicbased reasoning about such descriptions: the treatment of atomic judgments as fixed points (recursive definitions) and an encoding of binding constructs via generic judgments. However, the logics encompassing these two features have thus far treated them orthogonally. In particular, they have not contained the ability to form definitions of objectlogic properties that themselves depend on an intrinsic treatment of binding. We propose a new and simple integration of these features within an intuitionistic logic enhanced with induction over natural numbers and we show that the resulting logic is consistent. The pivotal part of the integration allows recursive definitions to define generic judgments in general and not just the simpler atomic judgments that are traditionally allowed. The usefulness of this logic is illustrated by showing how it can provide elegant treatments of objectlogic contexts that appear in proofs involving typing calculi and arbitrarily cascading substitutions in reducibility arguments.