Results 11  20
of
53
Digits and Continuants in Euclidean Algorithms. Ergodic versus Tauberian Theorems
, 2000
"... We obtain new results regarding the precise average case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the averagecase complexity of an algorithm is related to the analytic behaviou ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
We obtain new results regarding the precise average case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the averagecase complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide a unifying framework for the analysis of the main parameters digits and continuants that intervene in an entire class of gcdlike algorithms. We operate a general transfer from the continuous case (Continued Fraction Algorithms) to the discrete case (Euclidean Algorithms), where Ergodic Theorems are replaced by Tauberian Theorems.
A universal characterization of the closed euclidean interval (Extended Abstract)
 PROC. OF 16TH ANN. IEEE SYMP. ON LOGIC IN COMPUTER SCIENCE, LICS'01
, 2001
"... We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basi ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We propose a notion of interval object in a category with finite products, providing a universal property for closed and bounded real line segments. The universal property gives rise to an analogue of primitive recursion for defining computable functions on the interval. We use this to define basic arithmetic operations and to verify equations between them. We test the notion in categories of interest. In the
Continued Fractions, Comparison Algorithms, and Fine Structure Constants
, 2000
"... There are known algorithms based on continued fractions for comparing fractions and for determining the sign of 2x2 determinants. The analysis of such extremely simple algorithms leads to an incursion into a surprising variety of domains. We take the reader through a light tour of dynamical systems ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
There are known algorithms based on continued fractions for comparing fractions and for determining the sign of 2x2 determinants. The analysis of such extremely simple algorithms leads to an incursion into a surprising variety of domains. We take the reader through a light tour of dynamical systems (symbolic dynamics), number theory (continued fractions), special functions (multiple zeta values), functional analysis (transfer operators), numerical analysis (series acceleration), and complex analysis (the Riemann hypothesis). These domains all eventually contribute to a detailed characterization of the complexity of comparison and sorting algorithms, either on average or in probability.
QArith: Coq formalisation of lazy rational arithmetic
 Types for Proofs and Programs, volume 3085 of LNCS
, 2003
"... Abstract. In this paper we present the Coq formalisation of the QArith library which is an implementation of rational numbers as binary sequences for both lazy and strict computation. We use the representation also known as the SternBrocot representation for rational numbers. This formalisation use ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Abstract. In this paper we present the Coq formalisation of the QArith library which is an implementation of rational numbers as binary sequences for both lazy and strict computation. We use the representation also known as the SternBrocot representation for rational numbers. This formalisation uses advanced machinery of the Coq theorem prover and applies recent developments in formalising general recursive functions. This formalisation highlights the rôle of type theory both as a tool to verify handwritten programs and as a tool to generate verified programs. 1
Generating Power of Lazy Semantics
 Theoretical Computer Science
, 1997
"... We discuss the use of the lazy evaluation scheme as coding tool in some algebraic manipulations. We show  on several examples  how to process the infinite power series or other openended data structures with corecurrent algorithms, which simplify enormously the coding of recurrence relations ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
We discuss the use of the lazy evaluation scheme as coding tool in some algebraic manipulations. We show  on several examples  how to process the infinite power series or other openended data structures with corecurrent algorithms, which simplify enormously the coding of recurrence relations or solving equations in the power series domain. The important point is not the "infinite" length of the data, but the fact that the algorithms use open recursion, and the user never thinks about the truncation. 1 Introduction This article develops some applications of the functional lazy evaluation schemes to symbolic calculus. Neither the idea of nonstrict semantics, nor its application to generate infinite, open structures such as power series, are new, see for example [1, 2], some books on functional programming ([3, 4]), etc. The lazy evaluation (or call by need is a protocol which delays the evaluation of the arguments of a function: while evaluating f(x) the code for f is entered, ...
Lazy Computation with Exact Real Numbers
 Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP98), volume 34, 1 of ACM SIGPLAN Notices
, 1997
"... We extend the framework for exact real arithmetic using linear fractional transformations from the nonnegative numbers to the extended real line. We then present an extension of PCF with a real type which introduces an eventually breadthfirst strategy for lazy evaluation of exact real numbers. In ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We extend the framework for exact real arithmetic using linear fractional transformations from the nonnegative numbers to the extended real line. We then present an extension of PCF with a real type which introduces an eventually breadthfirst strategy for lazy evaluation of exact real numbers. In this language, we present the constant redundant if, rif, for defining functions by cases which, in contrast to parallel if (pif), overcomes the problem of undecidability of comparison of real numbers in finite time. We use the upper space of the onepoint compactification of the real line to develop a denotational semantics for the lazy evaluation of real programs. Finally two adequacy results are proved, one for programs containing rif and one for those not containing it. Our adequacy results in particular provide the proof of correctness of algorithms for computation of singlevalued elementary functions. 1 Introduction It is well known that the accumulation of roundoff errors in floati...
Contractivity of Linear Fractional Transformations
 Third Real Numbers and Computers Conference (RNC3
, 1998
"... One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a welldefined real number) if the involved LFT's are sufficiently c ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a welldefined real number) if the involved LFT's are sufficiently contractive. In this paper, we define a notion of contractivity for LFT's. It is used for convergence theorems and for the analysis and improvement of algorithms for elementary functions. Keywords : Exact Real Arithmetic, Linear Fractional Transformations 1 Introduction Linear Fractional Transformations (LFT's) provide an elegant approach to real number arithmetic [8, 17, 11, 14, 12, 6]. Onedimensional LFT's x 7! ax+c bx+d are used in the representation of real numbers and to implement basic unary functions, while twodimensional LFT's (x; y) 7! axy+cx+ey+g bxy+dx+fy+h provide binary operations such as addition and multiplication, and can be combined to obtain infinite expression trees ...
Exact Arithmetic on the SternBrocot Tree
 Nijmeegs Instituut voor Informatica en Informateikunde, 2003. http://www.cs.ru.nl/research/reports/full/NIIIR0325.pdf
, 2003
"... In this paper we present the Stern{Brocot tree as a basis for performing exact arithmetic on rational and real numbers. We introduce the tree and mention its relation with continued fractions. Based on the tree we present a binary representation of rational numbers and investigate various algorithms ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
In this paper we present the Stern{Brocot tree as a basis for performing exact arithmetic on rational and real numbers. We introduce the tree and mention its relation with continued fractions. Based on the tree we present a binary representation of rational numbers and investigate various algorithms to perform exact rational arithmetic using a simpli ed version of the homographic and the quadratic algorithms [19, 12]. We show generalisations of homographic and quadratic algorithms to multilinear forms in n variables and we prove the correctness of the algorithms. Finally we modify the tree to get a redundant representation for real numbers.
A high radix online arithmetic for credible and accurate computing
 Journal of Universal Computer Science
, 1995
"... Abstract: The result of a simple oatingpoint computation can be in great error, even though no error is signaled, no coding mistakes are in the program, and the computer hardware is functioning correctly. This paper proposes a set of instructions appropriate for a general purpose microprocessor tha ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract: The result of a simple oatingpoint computation can be in great error, even though no error is signaled, no coding mistakes are in the program, and the computer hardware is functioning correctly. This paper proposes a set of instructions appropriate for a general purpose microprocessor that can be used to improve the credibility and accuracy of numerical computations. Such instructions provide direct hardware support for monitoring events which may threaten computational integrity, implementing oatingpoint data types of arbitrary precision, and repeating calculations with greater precision. These useful features are obtained by the e cient implementation of high radix online arithmetic. The prevalence of superscalar and VLIW processors makes this approach especially attractive.
Number Computability and Domain Theory
 Information and Computation
, 1996
"... We present the different constructive definitions of real number that can be found in the literature. Using domain theory we analyse the notion of computability that is substantiated by these definitions and we give a definition of computability for real numbers and for functions acting on them. Thi ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
We present the different constructive definitions of real number that can be found in the literature. Using domain theory we analyse the notion of computability that is substantiated by these definitions and we give a definition of computability for real numbers and for functions acting on them. This definition of computability turns out to be equivalent to other definitions given in the literature using different methods. Domain theory is a useful tool to study higher order computability on real numbers. An interesting connection between Scotttopology and the standard topologies on the real line and on the space of continuous functions on reals is stated. An important result in this paper is the proof that every computable functional on real numbers is continuous w.r.t. the compact open topology on the function space. 1