Results 1  10
of
11
Setoids in Type Theory
, 2000
"... Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
Formalising mathematics in dependent type theory often requires to use setoids, i.e. types with an explicit equality relation, as a representation of sets. This paper surveys some possible denitions of setoids and assesses their suitability as a basis for developing mathematics. In particular, we argue that a commonly advocated approach to partial setoids is unsuitable, and more generally that total setoids seem better suited for formalising mathematics. 1
Constructive Category Theory
 IN PROCEEDINGS OF THE JOINT CLICSTYPES WORKSHOP ON CATEGORIES AND TYPE THEORY, GOTEBORG
, 1998
"... ..."
A Simple Model for Quotient Types
 Proceedings of TLCA'95, volume 902 of Lecture Notes in Computer Science
, 1995
"... . We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In excha ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
. We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In exchange, the model is much simpler and more intuitive than the one proposed by the author in [10]. Moreover, we interpret a choice operator for quotient types that, under certain restrictions, allows one to recover a representative from an equivalence class. Since the model is constructed syntactically, the interpretation function from the syntax with quotient types to the model gives rise to a procedure which eliminates quotient types by replacing propositional equality by equality relations defined by induction on the type structure ("book equalities"). 1 Introduction Intensional type theories like the Calculus of Constructions have been proposed as a framework in which to formalise mathemati...
Universal Algebra in Type Theory
 Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs '99, volume 1690 of LNCS
, 1999
"... We present a development of Universal Algebra inside Type Theory, formalized using the proof assistant Coq. We define the notion of a signature and of an algebra over a signature. We use setoids, i.e. ... ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
We present a development of Universal Algebra inside Type Theory, formalized using the proof assistant Coq. We define the notion of a signature and of an algebra over a signature. We use setoids, i.e. ...
Type Theory via Exact Categories (Extended Abstract)
 In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science LICS '98
, 1998
"... Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
Partial equivalence relations (and categories of these) are a standard tool in semantics of type theories and programming languages, since they often provide a cartesian closed category with extended definability. Using the theory of exact categories, we give a categorytheoretic explanation of why the construction of a category of partial equivalence relations often produces a cartesian closed category. We show how several familiar examples of categories of partial equivalence relations fit into the general framework. 1 Introduction Partial equivalence relations (and categories of these) are a standard tool in semantics of programming languages, see e.g. [2, 5, 7, 9, 15, 17, 20, 22, 35] and [6, 29] for extensive surveys. They are usefully applied to give proofs of correctness and adequacy since they often provide a cartesian closed category with additional properties. Take for instance a partial equivalence relation on the set of natural numbers: a binary relation R ` N\ThetaN on th...
Formalising mathematics in UTT: fundamentals and case studies
, 1994
"... We give a detailed account of the use of type theory as a foundational language to formalise mathematics. We develop in the type system UTT a coherent approach to naive set theory and elementary mathematical notions. In the second part of the paper, we present a fullychecked example based on our re ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We give a detailed account of the use of type theory as a foundational language to formalise mathematics. We develop in the type system UTT a coherent approach to naive set theory and elementary mathematical notions. In the second part of the paper, we present a fullychecked example based on our representation of naive set theory. Contents 1 Introduction 1 2 Fundamentals 3 2.1 Naive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Discrete sets . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 The category of sets . . . . . . . . . . . . . . . . . . . . . 5 2.1.5 Multivariate maps . . . . . . . . . . . . . . . . . . . . . . 6 2.1.6 Predicates and relations . . . . . . . . . . . . . . . . . . . 7 2.1.7 Subsets and powerset . . . . . . . . . . . . . . . . . . . . 7 2.1.8 Quotients . . . . . . . . . . . . . . . ...
Specifications, Algorithms, Axiomatisations and Proofs Commented Case Studies
 In the Coq Proof Assistant”, Summer School on Logic of Computation
, 1995
"... 1.1 An overview of the specification language Gallina.................... 5 ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
1.1 An overview of the specification language Gallina.................... 5
Algebraic System Specification and Development: Survey and Annotated Bibliography  Second Edition 
, 1997
"... Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . ..."
Abstract
 Add to MetaCart
Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.4 Special Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Semantics of Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Semantics of Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.2 Action Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.7 Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.1 Early Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7.2 Recent Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . . . . 55 4.7.3 The Common Framework Initiative. . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Methodology 57 5.1 Development Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Applica...
Axiomatisations, Proofs, and Formal Specifications of Algorithms: Commented Case Studies In the Coq Proof Assistant
"... this paper is but a tiny initial fragment of the theory of categories. However, it is quite promising, in that the power of dependent types and inductive types (or at least \Sigmatypes) is put to full use; note in particular the dependent equality between morphisms of possibly nonconvertible types ..."
Abstract
 Add to MetaCart
this paper is but a tiny initial fragment of the theory of categories. However, it is quite promising, in that the power of dependent types and inductive types (or at least \Sigmatypes) is put to full use; note in particular the dependent equality between morphisms of possibly nonconvertible types.
The Inadequacy of Pure Intention
, 2007
"... How to reason about two things when they are only one. ..."