Results 1  10
of
159
Anfis: adaptivenetworkbased fuzzy inference system
 IEEE Trans. Syst., Man, Cybern
, 1993
"... ..."
(Show Context)
Neurofuzzy modeling and control
 IEEE Proceedings
, 1995
"... Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framew ..."
Abstract

Cited by 206 (1 self)
 Add to MetaCart
(Show Context)
Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called ANFIS (AdaptiveNetworkbased Fuzzy Inference System), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neurofuzzy approaches are also addressed. KeywordsFuzzy logic, neural networks, fuzzy modeling, neurofuzzy modeling, neurofuzzy control, ANFIS. I.
Designing fuzzy inference systems from data: an interpretabilityoriented review
 IEEE Trans. Fuzzy Systems
"... Abstract—Fuzzy inference systems (FIS) are widely used for process simulation or control. They can be designed either from expert knowledge or from data. For complex systems, FIS based on expert knowledge only may suffer from a loss of accuracy. This is the main incentive for using fuzzy rules infer ..."
Abstract

Cited by 72 (13 self)
 Add to MetaCart
(Show Context)
Abstract—Fuzzy inference systems (FIS) are widely used for process simulation or control. They can be designed either from expert knowledge or from data. For complex systems, FIS based on expert knowledge only may suffer from a loss of accuracy. This is the main incentive for using fuzzy rules inferred from data. Designing a FIS from data can be decomposed into two main phases: automatic rule generation and system optimization. Rule generation leads to a basic system with a given space partitioning and the corresponding set of rules. System optimization can be done at various levels. Variable selection can be an overall selection or it can be managed rule by rule. Rule base optimization aims to select the most useful rules and to optimize rule conclusions. Space partitioning can be improved by adding or removing fuzzy sets and by tuning membership function parameters. Structure optimization is of a major importance: selecting variables, reducing the rule base and optimizing the number of fuzzy sets. Over the years, many methods have become available for designing FIS from data. Their efficiency is usually characterized by a numerical performance index. However, for humancomputer cooperation another criterion is needed: the rule interpretability. An implicit assumption states that fuzzy rules are by nature easy to be interpreted. This could be wrong when dealing with complex multivariable systems or when the generated partitioning is meaningless for experts. This paper analyzes the main methods for automatic rule generation and structure optimization. They are grouped into several families and compared according to the rule interpretability criterion. For this purpose, three conditions for a set of rules to be interpretable are defined. Index Terms—Fuzzy inference systems, fuzzy partitioning, interpretability, rule induction, system optimization. I.
Soft Computing: the Convergence of Emerging Reasoning Technologies
 Soft Computing
, 1997
"... The term Soft Computing (SC) represents the combination of emerging problemsolving technologies such as Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural Networks (NNs), and Genetic Algorithms (GAs). Each of these technologies provide us with complementary reasoning and searching methods to so ..."
Abstract

Cited by 64 (8 self)
 Add to MetaCart
The term Soft Computing (SC) represents the combination of emerging problemsolving technologies such as Fuzzy Logic (FL), Probabilistic Reasoning (PR), Neural Networks (NNs), and Genetic Algorithms (GAs). Each of these technologies provide us with complementary reasoning and searching methods to solve complex, realworld problems. After a brief description of each of these technologies, we will analyze some of their most useful combinations, such as the use of FL to control GAs and NNs parameters; the application of GAs to evolve NNs (topologies or weights) or to tune FL controllers; and the implementation of FL controllers as NNs tuned by backpropagationtype algorithms.
A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... A new methodology of extraction, optimization, and application of sets of logical rules is described. Neural networks are used for initial rule extraction, local, or global minimization procedures for optimization, and Gaussian uncertainties of measurements are assumed during application of logical ..."
Abstract

Cited by 54 (24 self)
 Add to MetaCart
A new methodology of extraction, optimization, and application of sets of logical rules is described. Neural networks are used for initial rule extraction, local, or global minimization procedures for optimization, and Gaussian uncertainties of measurements are assumed during application of logical rules. Algorithms for extraction of logical rules from data with realvalued features require determination of linguistic variables or membership functions. Contextdependent membership functions for crisp and fuzzy linguistic variables are introduced and methods of their determination described. Several neural and machine learning methods of logical rule extraction generating initial rules are described, based on constrained multilayer perceptron, networks with localized transfer functions or on separability criteria for determination of linguistic variables. A tradeoff between accuracy/simplicity is explored at the rule extraction stage and between rejection/error level at the optimization stage. Gaussian uncertainties of measurements are assumed during application of crisp logical rules, leading to “soft trapezoidal” membership functions and allowing to optimize the linguistic variables using gradient procedures. Numerous applications of this methodology to benchmark and reallife problems are reported and very simple crisp logical rules for many datasets provided.
Hybrid Neural Systems
, 2000
"... This chapter provides an introduction to the field of hybrid neural systems. Hybrid neural systems are computational systems which are based mainly on artificial neural networks but also allow a symbolic interpretation, or interaction with symbolic components. In this overview, we will describe rece ..."
Abstract

Cited by 53 (11 self)
 Add to MetaCart
(Show Context)
This chapter provides an introduction to the field of hybrid neural systems. Hybrid neural systems are computational systems which are based mainly on artificial neural networks but also allow a symbolic interpretation, or interaction with symbolic components. In this overview, we will describe recent results of hybrid neural systems. We will give a brief overview of the main methods used, outline the work that is presented here, and provide additional references. We will also highlight some important general issues and trends.
Are artificial neural networks black boxes
 IEEE Trans. Neural Networks
, 1997
"... Abstract — Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisf ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
(Show Context)
Abstract — Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rulebased systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of fduality. In addition, this interpretation offers an automated knowledge acquisition procedure. Index Terms — Equality between neural nets and fuzzy rulebased systems, fduality, fuzzy additive systems, interpretation of neural nets, ior operator. I.
Hybrid neural systems: from simple coupling to fully integrated neural networks
 Neural Computing Surveys
, 1999
"... This paper describes techniques for integrating neural networks and symbolic components into powerful hybrid systems. Neural networks have unique processing characteristics that enable tasks to be performed that would be di cult or intractable for a symbolic rulebased system. However, a standalone ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
This paper describes techniques for integrating neural networks and symbolic components into powerful hybrid systems. Neural networks have unique processing characteristics that enable tasks to be performed that would be di cult or intractable for a symbolic rulebased system. However, a standalone neural network requires an interpretation either by ahuman or a rulebased system. This motivates the integration of neural/symbolic techniques within a hybrid system. Anumber of integration possibilities exist: some systems consist of neural network components performing symbolic tasks while other systems are composed of several neural networks and symbolic components, each component acting as a selfcontained module communicating with the others. Other hybrid systems are able to transform subsymbolic representations into symbolic ones and viceversa. This paper providesanoverview and evaluation of the state of the artofseveral hybrid neural systems for rulebased processing. 1
Selecting input variables for fuzzy models
 Journal of Intelligent and Fuzzy Systems
, 1996
"... We present an efficient method for selecting important input variables when building a fuzzy model from data. Past methods for input variable selection require generating different models while searching for the optimal combination of variables; our method requires generating only one model that emp ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
(Show Context)
We present an efficient method for selecting important input variables when building a fuzzy model from data. Past methods for input variable selection require generating different models while searching for the optimal combination of variables; our method requires generating only one model that employs all possible input variables. To determine the important variables, premises in the fuzzy rules of this initial model are systematically removed to search for the best simplified model without actually generating any new models. We also present an efficient method for generating the initial model that typically must incorporate a large number of input variables. These methods are illustrated through application to the benchmark Box and Jenkins gas furnace data; the results are compared with those of other fuzzy models found in literature. 1.
Computational Intelligence Methods for RuleBased Data Understanding
 PROCEEDINGS OF THE IEEE
, 2004
"... ... This paper is focused on the extraction and use of logical rules for data understanding. All aspects of rule generation, optimization, and application are described, including the problem of finding good symbolic descriptors for continuous data, tradeoffs between accuracy and simplicity at the r ..."
Abstract

Cited by 28 (3 self)
 Add to MetaCart
(Show Context)
... This paper is focused on the extraction and use of logical rules for data understanding. All aspects of rule generation, optimization, and application are described, including the problem of finding good symbolic descriptors for continuous data, tradeoffs between accuracy and simplicity at the ruleextraction stage, and tradeoffs between rejection and error level at the rule optimization stage. Stability of rulebased description, calculation of probabilities from rules, and other related issues are also discussed. Major approaches to extraction of logical rules based on neural networks, decision trees, machine learning, and statistical methods are introduced. Optimization and application issues for sets of logical rules are described. Applications of such methods to benchmark and reallife problems are reported and illustrated with simple logical rules for many datasets. Challenges and new directions for research are outlined.