Results 1  10
of
3,117
A Theory of the Learnable
, 1984
"... Humans appear to be able to learn new concepts without needing to be programmed explicitly in any conventional sense. In this paper we regard learning as the phenomenon of knowledge acquisition in the absence of explicit programming. We give a precise methodology for studying this phenomenon from ..."
Abstract

Cited by 1696 (15 self)
 Add to MetaCart
Humans appear to be able to learn new concepts without needing to be programmed explicitly in any conventional sense. In this paper we regard learning as the phenomenon of knowledge acquisition in the absence of explicit programming. We give a precise methodology for studying this phenomenon from a computational viewpoint. It consists of choosing an appropriate information gathering mechanism, the learning protocol, and exploring the class of concepts that can be learnt using it in a reasonable (polynomial) number of steps. We find that inherent algorithmic complexity appears to set serious limits to the range of concepts that can be so learnt. The methodology and results suggest concrete principles for designing realistic learning systems.
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images ..."
Abstract

Cited by 1505 (18 self)
 Add to MetaCart
We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space  if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce selfshadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes in a lowdimensional subspace even under severe variation in lighting and facial expressions. The Eigenface
Mean shift: A robust approach toward feature space analysis
 In PAMI
, 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract

Cited by 1461 (34 self)
 Add to MetaCart
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and thus its utility in detecting the modes of the density. The equivalence of the mean shift procedure to the Nadaraya–Watson estimator from kernel regression and the robust Mestimators of location is also established. Algorithms for two lowlevel vision tasks, discontinuity preserving smoothing and image segmentation are described as applications. In these algorithms the only user set parameter is the resolution of the analysis, and either gray level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.
Data Clustering: A Review
 ACM COMPUTING SURVEYS
, 1999
"... Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exp ..."
Abstract

Cited by 1284 (13 self)
 Add to MetaCart
Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify crosscutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.
Combining labeled and unlabeled data with cotraining
, 1998
"... We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the ta ..."
Abstract

Cited by 1244 (28 self)
 Add to MetaCart
We consider the problem of using a large unlabeled sample to boost performance of a learning algorithm when only a small set of labeled examples is available. In particular, we consider a setting in which the description of each example can be partitioned into two distinct views, motivated by the task of learning to classify web pages. For example, the description of a web page can be partitioned into the words occurring on that page, and the words occurring in hyperlinks that point to that page. We assume that either view of the example would be su cient for learning if we had enough labeled data, but our goal is to use both views together to allow inexpensive unlabeled data to augment amuch smaller set of labeled examples. Speci cally, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each algorithm's predictions on new unlabeled examples are used to enlarge the training set of the other. Our goal in this paper is to provide a PACstyle analysis for this setting, and, more broadly, a PACstyle framework for the general problem of learning from both labeled and unlabeled data. We also provide empirical results on real webpage data indicating that this use of unlabeled examples can lead to signi cant improvement of hypotheses in practice. As part of our analysis, we provide new re
Instancebased learning algorithms
 Machine Learning
, 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract

Cited by 1053 (18 self)
 Add to MetaCart
Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instancebased learning, that generates classification predictions using only specific instances. Instancebased learning algorithms do not maintain a set of abstractions derived from specific instances. This approach extends the nearest neighbor algorithm, which has large storage requirements. We describe how storage requirements can be significantly reduced with, at most, minor sacrifices in learning rate and classification accuracy. While the storagereducing algorithm performs well on several realworld databases, its performance degrades rapidly with the level of attribute noise in training instances. Therefore, we extended it with a significance test to distinguish noisy instances. This extended algorithm's performance degrades gracefully with increasing noise levels and compares favorably with a noisetolerant decision tree algorithm.
Wrappers for feature subset selection
 ARTIFICIAL INTELLIGENCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1023 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach and show a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 786 (31 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a query point q 2 R d , and ffl ? 0, a (1 + ffl)approximate nearest neighbor of q can be computed in O(c d;ffl log n) time, where c d;ffl d d1 + 6d=ffle d is a factor depending only on dimension and ffl. In general, we show that given an integer k 1, (1 + ffl)approximations to the k nearest neighbors of q can be computed in additional O(kd log n) time.
Hierarchical mixtures of experts and the EM algorithm
 Neural Computation
, 1994
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 723 (19 self)
 Add to MetaCart
We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood problem; in particular, we present an ExpectationMaximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an online learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain. 1